National Report of Sweden

NKG geoid WG meeting

Jonas Ågren

jonas.agren@lm.se

Summary of Swedish geoid activities

- Updated GNSS/levelling observations.
- New gravimetric quasigeoid model KTH08 computed in cooperation between Lantmäteriet and KTH.
- New quasigeoid model (height correction model) SWEN08_RH2000 based on KTH08 and the updated GNSS/levelling observations were released in early 2009.
- Comparison of KTH08 and EGM2008.
- Comparison of SWEN08_RH2000 and FIN2005N00 along the border.
- Work started to improve the Swedish gravity networks and systems as well as the gravity data (today ice measurements started in the lake Vänern.)
- KTH: Two PhDs in Physical Geodesy during 2009 (Prosper Ulotu and Mehdi Eshagh)
- KTH: On-going research concerning estimation of crustal thickness based on different isostatic hypotheses.
- KTH: Geoid school in Istanbul, Turkey Sept. 20-24.
 More information from Lars Sjöberg; see http://www.infra.kth.se/geo/events.html

2010-03-09

10° 70°-15° 70° 65° 65° 60° 10° 25° 15° 20°

Updated GNSS/levelling

Tab.1. The GNSS/Levelling observations and their approximate standard errors.

	Data set	#	Short description	Appr. standard errors (mm)		
	Butu Set	,,	Short description	GNSS height	Normal height	Height anomaly
•	SWEPOS	25	Permanent GPS stations whose coordinates define SWEREF 99 (Jivall 2001)	5-10	5-10	7-14
•	SWEREF	181	Determined relative to SWEPOS using 48 hours of obs, DM T antennas and the Bernese software	10-20	5-10	11-22
)°	RIX 95	1364	Densification of the above stations using static GPS with 0.5-1.0 hours of obs. per session. Network adjustment	15-30	5-10	16-32

1570

Computation of KTH08

The Least squares modification of Stokes' formula (stochastic kernel modification) with additive corrections (LSMSA approach, KTH method, etc)

The height anomaly is computed as

$$\zeta = \frac{R}{4\pi\gamma} \iint_{\sigma_0} S^M \left(\psi\right) \Delta g d\sigma + \frac{R}{2\gamma} \sum_{n=2}^{M} \left(s_n + Q_n^M\right) \Delta g_n^{GGM} + \delta \zeta_{DWC} + \delta \zeta_{ATM} + \delta \zeta_{ELL}$$

 $S^{M}(\psi)$ is the modified Stokes' function chosen according to Sjöberg (1991).

 $\delta \zeta_{DWC}$ includes analytical continuation to point-level of both the gravity anomalies (Moritz 1980) and the spherical harmonic expansion; cf. Sjöberg (2003) and Ågren (2004).

 $\delta \zeta_{ATM}$ is the atmospheric correction (Sjöberg and Nahavandchi 2000).

 $\delta \zeta_{ELL}$ is the ellipsoidal correction (Sjöberg 2004).

Practical steps in the computation

- Collection and choice of Data
 - Surface and air gravity observations from the NKG-database.
 - GGM02C extended with EGM 96 from degree 201 to 360.
 - Swedish photogrammetric DEM with 100mx100m resolution.
 The Scandinavian DEM from the NKG 2004 computation (sdem2004.01).
 SRTM30plus to extend the model to the south.
- Gridding of the surface gravity anomalies
 - The gravity anomalies are first reduced for the long-wavelength effect from the GGM and the high-frequency effect from the topography (RTM reduction)
 - Gross error detection.
 - The residual gravity anomaly is gridded using Kriging/Collocation, 15 km corr. length.
 Comparatively dense grid used (0.01°x0.02°).
 - The reduced effects are finally restored.
- Geoid heights in a regular grid are finally estimated using the above theory.
 Haagman's 1D-FFT to evaluate Stokes' integral.

2010-03-09 5

Additive corrections

2010-03-09 6

GNSS/levelling residuals for KTH08

• Statistics after fit (mm):

Model	# par	Min	Max	Mean	StdErr
KTH08	1	-66	60	0	22
K11100	4	-73	68	0	20

Final words on KTH08

- A new improved gravimetric quasigeoid model has been computed using the KTH method.
- The very good fit (RMS 2 cm) to GNSS/levelling indicates that the reference systems (SWEREF 99/RH 2000) **and** the gravimetric model are of high quality.
- Published in

Ågren J, Sjöberg LE and Kiamehr R (2009) The New Gravimetric Quasigeoid Model KTH08 over Sweden. Journal of Applied Geodesy 3: 143-153.

Comparison of KTH08 and EGM2008

Table 2: Statistics for the GPS/levelling residuals after a **1-parameter** transformation/fit. Unit: m

EGM	M	# gpslev	Min	Max	Mean	StdDev
	2190	195	-0.074	0.095	0.000	0.027
EGM2008	1440	195	-0.116	0.089	0.000	0.037
EGWIZOO	720	195	-0.172	0.124	0.000	0.045
	360	195	-0.266	0.257	0.000	0.099
	2190	195	-0.248	0.085	0.000	0.039
PGM2007A	1440	195	-0.289	0.130	0.000	0.045
FGM2007A	720	195	-0.295	0.118	0.000	0.051
	360	195	-0.428	0.252	0.000	0.103
EGM 96	360	195	-0.376	0.509	0.000	0.172

- EGM2008 is almost as good as KTH08.
- Very similar results!

SWEN08_RH2000

- The new national Swedish (quasi)geoid model adapted to the reference systems SWEREF 99 and RH 2000.
- Computed by fitting KTH08 to the updated GNSS/levelling data set by means of a smooth residual surface.
- Published in

Ågren J (2009): beskrivning av de nationella geoidmodellerna SWEN08_RH2000 och SWEN08_RH70. Reports in Geodesy and Geographic Information Systems, 2009:1, Gävle, Sweden.

Download at

http://www.lantmateriet.se/upload/filer/kartor/geodesi_gps_och_detal jmatning/Rapporter-Publikationer/LMV-rapporter/LMV-Rapport_2009_1.pdf

See http://www.lantmateriet.se/templates/LMV_Page.aspx?id=4416

Residuals of KTH08

 The gravimetric model KTH08 have been corrected for the weighted mean of the differences from GNSS/levelling (1-parametertransformation)

Statistics for the residuals [m]:

Points	#	Min	Max	Mean	StdDev
SWEPOS	25	-0.056	0.021	-0.003	0.018
SWEREF	181	-0.071	0.057	-0.006	0.022
RIX 95	1364	-0.086	0.071	0.001	0.024
Alla	1570	-0.086	0.071	0.000	0.024

SWEN08_RH2000: Residual surface

2010-03-09

 Collocation (GEOGRID) with the following apriori standard errors for the GNSS/ levelling observations:

Type	Apriori standard errors		
SWEPOS	10 mm		
SWEREF (50km)	14 mm		
RIX 95	21 mm		

 Covariance function (2nd order Gauss Markov) with 85 km correlation length chosen after covariance analysis of the residuals.

SWEN08_RH2000 = KTH08 + corr. land uplift and perm. tide + shift + residual surface

SWEN08_RH2000: Residuals

- Same scale as above.
- Statistics for the residuals [m]:

Points	#	Min	Max	Mean	StdDev
SWEPOS	25	-0.018	0.023	-0.005	0.009
SWEREF	181	-0.021	0.019	-0.002	0.008
RIX 95	1364	-0.038	0.047	0.001	0.011
All	1570	-0.038	0.047	0.000	0.011

Evaluation in test points

- 51 new SWEREF-points were measured in 2007 on benchmarks in areas without GNSS/levelling (of this class).
- These 51 SWEREF stations are suitable to test the accuracy of SWEN08_RH2000 (comparatively independent).
- All the test points were first excluded and a similar model as SWEN08_RH2000 computed.
- Statistics for the differences in the test points (m):

#	Min	Max	Medel	Medelfel	RMS
51	-0.031	0.029	-0.004	0.013	0.013

Accuracy for SWEN08_RH2000

"The highest mountains to the north west"

- Standard error for SWEN08_RH2000 is 10-15 mm on the main land (except for "the highest mountains to the north west"; see figure)
- Standard error in "highest mountains to the north west" and at sea I probably around 5-10 cm.

Comparison along the Swedish-Finnish border

SWEN08_RH2000 minus FIN2005N00

