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MOTIVATION I

Consistent and accurate sea level is a key component

for:
» Safe navigations, coastal protection, marine engineering, climate change, and
coastal city flooding
» Operational forecasting systems and planning decisions
» Important for Digital Twin applications

= Sea level maximas and extremes (SLM) are a major
contributor of coastal flooding, erosion, infrastructure
damage etc.

= Based on climate projections of IPCC sea level is rising
and extremes are expected to increase with magnitude,
frequency and duration

= This signals the need for adaptation and mitigation solutions

= Forecasting of sea level and their extemes are necessity both on
the short-term and the long terms perspective.

= Machine and deep learning (ML/DL) approaches can be utilized for
some of these solutions
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MOTIVATION II: MACHINE LEARNING AND DEEP LEARNING

» Massive data sets (satellites, in-situ, models)

= Due to advancements in computing technology (language processing, computational power,
etc.), machine learning (ML)/Deep learning (DL) algorithms have been widely acknowledged as
robust tools in finding patterns and forecasting in various fields (Zhou et al., 2023).

= Technological change and need of society are increasing---> digital transformation

‘ Virtual Entity ‘
| Interactive simulations
of the ocean




OUTLINE

Background of ML/DL
Sealevel forecasting in the Baltic Sea
= Extreme sea level forecasting in Baltic Sea

= ML method to improve hydrodynamic model applied to Baltic and Barent
Sea



MACHINE LEARNING BACKGROUND
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ML COMPONENTS

Component Role

Input Data ?eéz,ahsﬁrﬁes:geg\f; tcll‘:itrell)the model; quality heavily impacts performance
Model Mathematical structure that learns a mapping from input to output.
Prediction Output of the model (e.g., sea level forecast for 24 hours).

Loss Function Quantifies the error between predicted value and ground truth.

Ground Truth The actual correct output (labels) used for comparison.

Optimization Adjusts the model (weights/parameters) to reduce the loss

Repeated process of prediction — error — update, until model performance is

e i et s satisfactory.



ARTIFICIAL INTELLIGENCE, MACHINE LEARNING, DEEP
LEARNING AND NEURAL NETWORKS

= Al is the main system. Machine learning is a subset of Al. Deep learning is a subfield of
machine learning, and neural networks make up the backbone of deep learning algorithms.

ARTIFICIAL
INTELLIGENCE
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= DL is generated in almost the same way as ML, but it has many more levels, so that it attempts
to function similar to brain, in that it can take an input, processes it and then make its own
intuitive decisions/predictions. This, makes it ideal for large and nonlinear data processing.

Convolutional Neural Networks (CNNs) and Recurrent-based Neural Networks such as Long
Short-Term Memory Networks have been well-known DL methods.




EXAMPLES OF STUDIES

Category

Method / Architecture

Typical Applications

Al (General)

Rule-Based Expert Systems

Medical diagnosis support, navigation systems, fault
detection

Knowledge Graphs

Search engines, recommendation systems, biomedical
discovery

Machine Learning (ML)

Linear / Logistic Regression

Economic forecasting, medical risk prediction

Decision Trees

Fraud detection, medical decision support

Random Forest (RF)

Remote sensing classification, finance risk assessment,
anomaly detection

Gradient Boosting (XGBoost, LightGBM, CatBoost)

Kaggle competitions, financial forecasting, ranking
systems

Gaussian Process Regression (GPR)

Time series prediction, robotics control, uncertainty
quantification

Deep Learning (DL)

Convolutional Neural Networks (CNN)

Image recognition (e.g., ImageNet), facial recognition,
medical imaging

Recurrent Neural Networks (RNN), LSTM, GRU

Speech recognition, language modeling, stock prediction

Transformers (BERT, GPT, ViT)

Natural language processing, translation, vision tasks

Graph Neural Networks (GNNS)

Social network analysis, drug discovery, traffic
prediction

Deep Reinforcement Learning (DQN, PPO, A3C)

Robotics, AlphaGo (game playing), autonomous driving




Pearson correlation
r=2(xi-X)0yi-y))/(sart( = (xi - X)2 ) * sqrt( Z (yi-y)?)) 1(X;Y) = Z Z p(x,y) - log( p(x,y) / (p(X)P(Y)) )

r=+1 — Perfect positive linear relationship p(x,y) = joint probability distribution of X and Y

r=—1 — Perfect negative linear relationship p(x),p(y) = marginal distributions

r=0 — No linear relationship If X and Y are independent — I(X;Y)=0 (no shared information).

If knowing X perfectly predicts Y— I(X;Y) is high



Temperature vs. Sea LeveI Rlse
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ML/DL CONPONENTS: INPUTS AND METHOD

Various ML/DL approaches can be utilized:

= Univariate (i.e. it considers only the target variable) e.g:using traditional ML models such as
linear regression, regression tree, ensemble

= Multivariate frameworks (where several vadeep learning, Convolution Neural Network, random
forest, Recurrent Neural Networks (RNNs), and hybrid CNN-RNN models with respect to the target
parameter are considered) e.g

Multivariate forecasting methods generally outperform univariate models

Supervised Learning:The model is trained on a labeled dataset, meaning each input comes with
the correct output. Learn a mapping function from inputs (X) to outputs (Y)
Example: To forecast sealevel every 24 hours

Unsupervised learning: The model is trained on unlabeled data — only the inputs (X) are given,
without known outputs (Y). Discover hidden structures or patterns in data
Example: using satellite SST to determine hotspot patterns of hot and cold regions




000000 000

Activation Funetion(Relu)

LSTA/GRU Section

Multivariate
features

CNN-LSTM and CNN-GRU

of SLM

Multi-variate Time Series forecasting
0 S G S S S G D S V0 SN S YO S S NS N S U S S s " o
S |




DL METHOD: CONVOLUTION NEURAL NETWORK

DL methods such as Convolution Neural Networks (CNN’s) and Recurrent
based Neural Network applied successfully in prediction sea level tasks

Three primary layers:

= Convolution layer: most critical step usually a linear process. Input data assigned
weights and biases (filter or kernel). ReLu function (for nonlinearity)

= Flattening layer: produce a feature maps

= Fully connected layer: flattened data passed to CNN. Models are capable of
spatio-temporal connections and discern between dominating and low-level
characteristics
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OVERFITTING

Overfitting in machine learning happens when a model learns the training data too well, including
its noise, outliers, and random fluctuations, instead of just the underlying patterns.

= Signs
« Performs very well on training data (low training error).
« Performs poorly on new/unseen data (high test/validation error).

= Causes of Overfitting
« Model is too complex (too many parameters compared to data size).
 Not enough training data.
« Training for too many epochs.
« Including irrelevant features (noisy data).

Example: Studying for an exam if you memorize past questions word for word, you’'ll ace practice tests but fail
on new questions

= Ways to Prevent Overfitting
« Simplify the model (reduce parameters, prune trees, etc.).
« Regularization (dropout, weight decay).
« Early stopping during training.
* More training data or data augmentation.
« Cross-validation to tune hyperparameters.




HYPERPARAMATERS

= The selection of the hyperparameters influences the model's architecture, training
process, and overall performance. This is one of the most important steps to obtain better
model accuracy, achieve best possible performance and can prevent models from

overfitting

Hyperparameters, which are predetermined settings (e.g. learning rate, number of layers,

batch size, etc.), must be set before the learning process.

Several optimization approaches for hyperparameter
tuning

trial-and-error
random search

. -Inputs —_—
grid search (o)

genetic algorithms (Holland, 1992),

particle swarm optimization algorithms (Kennedy and
Eberhart, 1995),

Bayesian optimization (BO) (Snoek et al., 2012)
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HYPERPARAMATERS METHODS

Method

Trial-and-Error

Grid Search

Random Search

Genetic Algorithms
(GA) (Holland, 1992)

Particle Swarm
Optimization (PSO)
(Kennedy & Eberhart,
1995)

Bayesian
Optimization (BO)
(Snoek et al., 2012)

How it Works

Researcher manually tests different
hyperparameter values and adjusts based on
performance.

Tests all combinations of hyperparameters on
a predefined grid.

Randomly samples hyperparameter values
from defined ranges.

Mimics evolution: populations of
hyperparameters evolve through selection,
crossover, mutation.

Models hyperparameters as particles moving
through space, guided by best performers.

Builds a probabilistic model of performance,
chooses next hyperparameters based on
expected improvement.

Advantages

- Simple to implement- Uses
domain intuition

- Systematic- Easy to implement

- More efficient than grid search-
Covers more diverse space-
Simple automation

- Good at exploring large, complex
spaces- Can escape local optima

- Efficient for continuous spaces-
Good balance of
exploration/exploitation

- Very sample-efficient- Finds good
hyperparameters with fewer trials-
Strong theoretical basis

Disadvantages

- Very slow- No systematic
exploration- Not scalable

- Computationally expensive-
Inefficient in high dimensions-
Wastes trials on unimportant
parameters

- Still requires many trials- No
memory of past results

- Computationally expensive-
Many hyperparameters to tune in
the algorithm itself

- Can get stuck in local optima-
Sensitive to parameter choices

- More complex to implement-
Slower for very high-dimensional
spaces



EVALUATION

Root Mean Squared Error (RMSE): RMSE provides a measure of the typical prediction
error, with higher weight given to larger errors. The formulation is defined as below

Coefficient of Determination (R-squared): R-squared quantifies the proportion of

variance in the sea level data that are captured by the model predictions. The formulation
is defined as below:

— 2
Z?=1(DT(¢5/151) B DT(¢5:As:t))

RMSE g5 = \/ n

= 2
Yoy Xt (DT g 200 — DT(pone0))
— — 2
YL Xt 1 (DT g 50 — DTigyny))

1 w
where DT = —z DT p 25t

R?=1-
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SEA LEVEL FORECASTING: SHORT TERM (HOURS, DAYS)
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FACTORS THAT AFFECT SEA LEVEL

Several components based on different time frames affect the sea level dynamics in the Baltic Sea.

Long term (decadal, centuries):

Global sea level change (due to thermal sea water expansion and the melting of glaciers) will influence
the Baltic Sea’s level

Variation in temperature, precipitation, and evaporation is expected to mostly exert influence on a
decadal time scale

Short-term (yearly, seasonally, daily, etc.):
Major Baltic inflow, meteorological factors such as wind speed, sea level pressure, tides

River runoff also affects the water balance, with the biggest freshwater contributor being the Neva River
located on the eastern side of the Baltic

Sea ice

Much shorter time frames (e.g., weekly, daily, and hourly)

« Localized events also affect the sea level. Most of these events tend to be influenced by
meteorological factors especially the winds

« Surface waves
« Storm surges

Including relevant components enhances the accuracy and performance of the models

HOWEVER INCLUDING TOO MANY INPUTS CAN LEAD TO OVERFITTING AND REQUIRES
INCREASED COMPUTER PROCESSING RESOURCES



CASE STUDY: GULF OF FINLAND, BALTIC SEA

= To forecast dynamic topography multi-step time ahead (3h, 6h, 9h, 12h, 24h)

= Several inputs were examined:winds, temperature, salinity, pressure, dynamic topography

DT(g, ag+(riay) = f(Pressure(g iy, uwind g, ), vwindg, 1), SST(po,20: SSS (9,29 DT619) oty
,Where s = 1:number of grid points

w, A, and f define the temporal lag, the lead time (also called forecast horizon) and the mapping function, respectively

0.25°x0.25°

DT has been referred to the European Vertical Reference System (EVRS) which the tide

gauges and geoid model referred to
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CASE STUDY: CHOOSING INPUTS

= Box plots of mean, median, extremes, IQR
= Pearson correlation coefficients were calculated for all input components across distinct seasons (spring,
summer, winter, autumn)
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CASE STUDY: DL MODELS

Two recurrent neural network-based models such as the Long Short-Term Memory Networks (LSTMs), and the Gated
Recurrent Unit (GRU)
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CASE STUDY: HYPERPARAMATER OPTIMIZATION

= Trial-and-error method

Model parameters Description Chosen hyperparameter

LSTM/GRU Units Specifies the d-lmen5|onallty of the model's 512
internal state.

The activation function is applied after each
Activation Functions layer in the model to add nonlinearity. The 'default’
common choice for RNNs is "'Tanh' and Sigmoid.

Determines the humber of samples used in
Batch Size each forward and backward pass during 128
training.

Specifies how many times the model will be
Number of Training Epochs exposed to the entire training dataset during 50
training.

Determines the objective function that the

Loss Function . . L - .
model is trying to minimize during training.

'MSE'

The optimizer determines the specific algorithm
used to update the model's weights during
Optimizer training. Common optimizers include Adam, 'Adam’
RMSprop, and Stochastic Gradient Descent
(SGD).

A regularization technique that helps prevent
overfitting. It specifies the proportion of
Dropout Rate Regularization neurons or units that are randomly dropped out 0.1
during training, forcing the model to be more
robust.

Technique used to limit the model's weights
with certain values. It adds a penalty term to
the loss function based on the magnitude of the
Kernel Regularization weights. Common regularization techniques L2, 0.01
include L1 and L2 regularization. The
regularization Strength hyperparameter controls
the strength of the kernel regularization




CASE STUDY: RESULTS (OVERVIEW)

= Both LSTM and GRU methods are strong choices for sea level forecasting with RMSE <6 CM. GRU
performed slightly better with R2 and RMSE of 0.93, 4.96 cm

= Main difference between the LSTM and GRU model was that the GRU model has a simpler
method in storing and updating the connections between the different variables resulting in
fewer complexities and less computing time.

. Models
Horizons GRU LSTM
(hours) R2 RMSE (cm) RZ RMSE (cm)
3 0.96 3.55 0.95 4.13
6 0.95 4.41 0.94 4.85
9 0.92 5.16 0.92 5.47
12 0.91 5.67 0.90 5.87
24 0.89 5.99 0.89 6.17
average 0.93 4.96 0.92 5.3

Model Performance at All Locations for Different Horizons Model Performance at All Locations for Different Horizons

Average RMSE (cm)

5 10 15 20 25 5 10 15 20 25
Horizons (hours) Horizons (hours)



Actual-3h ahead DT(cm)
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The input component (v winds, sea
surface salinity, river discharge)
were not included in the final
variable selection

This exclusion may have
contributed to the poorer
performance experienced at
eastern and other sections



CASE STUDY: SPECIFIC SITE RESULTS
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= Both methods forecasted the normal sea level very good
= Both experience difficulties with the sea level maxima/extremes
= |nsufficient representation of maximum/extreme events in the training dataset

(skewness towards normal sea levels than extremes)




CASE STUDY: EXTERNAL TEST DATA WITH SATELLITE ALTIMETRY

S3 Tracks
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External test data was performed with S3A and
S3B

GRU-forecasted DTs and the HDM DT are for most
occasions in good agreement with SA DT values,

with the discrepancy of lower than 5 cm for tracks
S3A-83, S3A-300, S3A-414, S3B-83 and S3B-197.

However, the GRU model had poorer validation
results for tracks S3A-739, S3A-186, S3B-739, and
S3B-299 (10-15 cm).

The reason for these larger discrepancies may be
due to:

« HDM model not accurately modelling the
observed ocean dynamics.

« HDM corrected DTs had better consistency with
Sentinel 3A tracks compared to the Sentinel
3B, which is also in agreement with previous
results (Mostafavi et al., 2023).



FORECASTING OF SEA LEVEL EXTREMES
(SHORT TERM & LONG TERM)

Reference

Rajabi-Kiasari, S.; Ellmann, A.; Delpeche-Ellmann, N. Soomere, T. (submitted, Under review ). Forecasting Sea Level Maxima using
Machine Learning with Explainability and Extreme Value AnalysisSea level Forecasting using Deep Recurrent Neural Networks with
High-Resolution Hydrodynamic Model, International Journal of Applied Earth Observation and Geoinformation
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MACHINE LEARNING AND DEEP LEARNING

» Sea level maximas and extremes (SLM) are a major
contributor of coastal flooding, erosion, infrastructure
damage etc.

= The SLM are often characterized as (i) occurring
suddenly and usually having a time scale from minutes
(rogue waves, edge waves) to a few days (storm surges); -
(i) being site-specific rather than basin-wide (Pindsoo et ="
al., 2020); (iii) primarily driven by very strong storms West gate on Sea, England (photo credit: Max Montagut, www. flickr.com)

(a) Global mean sea level rise from 1900-2150

= Semi-enclosed sea areas such as (Baltic Sea, = .. . .. Iy
Meditteranean, Caspian Sea) most at risk for SLM, most |
Impactful on coastal areas that affects several countries.

) . /
! : / SSP3-7.0
ercentile k -
th percentile : s

§8P1-2.6

GMSL rise (m)

05 -

Observations 2150 medium & low

= Influenced by compound events such as waves, tides
storms that influence each other

30



CHALLENGES

Time Series- Horizon 12h - P3

R'M'SE'<5cm: g o Actual
GRU: 75%

100

3 Predicted by LSTM
3* 3 g - = = = Predicted by GRU
B £ R EE

— - ‘ Test Period (2019\)\
Opportunities/Objectives:

» Machine/Deep Learning approaches that can specifically examine SLM
> Deeper insight into the role of the drivers influencing these extremes by using explainability analyis

» Linking ML/DL results with traditional methods such as extreme value analysis gives deeper insight into the long-term forecasting



CASE STUDY: EXTREMES BALTIC SEA

SLM on Baltic coasts occur at different locations with different
influential forces which can be due to:

Initial sea Level (filling-up or prefilling) of the Baltic Sea

Wind Stress: magnitude, direction and duration

Low-Pressure Systems: Storms

Other factors: surface waves, water exchange between the Baltic
and the North Sea, precipitation, seasonal changes in water
density, and the occurrence of seiches (Weisse and Weidemann, 2017)

Characteristics:

Typical SLM in the Baltic Sea is 0.8 m

SLM in the Baltic Sea are more pronounced in the winter
season due to the seasonal cycle of wind

Wave set up may influence the SLM

Maximum SWH of 8.2 m was recorded in December 2004 in the
northern Baltic Proper

Six tide gauges stations selected: Narva, Ristna, Oulu,
Kungsholmsfort, Greifswald, Wladyslawowo

Data between 1971 to 2022. All data are referred to BSCD 2000
indicating vertical reference compatability

Relative Sea level utilized (Land uplift correction not applied)

Gaps in TG data filled by using bilinear interpolation

59.4691

58.9212

65.0403

54.0928

54.7968

56.1053

10°E

28.0421

22.0552

25.4182

13.446

18.4187

15.5894

0.1%

0.3%

0.5%

i

IS

-500

-500

-496.9

-494.4

ingsholmsfort

Monthly SLM Distribution - Oulu

EEA
(2024)
EEA
(2024)
FMI
(202)
BSH
(2024)
BOOS
(2024)
SMHI
(2024)



FEATURE SELECTION RESULTS

Initial feature selection: wind speed (zonal, meridional and Min Mean Max
gust), surface atmospheric pressure, evaporation, precipitation, EraS -16.33 3.53 24
river runoff, Baltic Sea Index, significant wave height Era5 -14.52 3.21 20.41
Era5 1.96 11.11 35.82
Mutual information (MI) index to discover the influential Eras e — 1052 2
parameters
SWAN
and 0 0.89 7.31
Uwind, Vwind, SWH, BSI and P were selected as the basic L
features for all stations. Era5 -0.00090 -0.000027 0.00019
_ _ L _ _ Era5 -4.34e-19 1.0196e-06 0.00082
Bayesian Information Criterion (BIC) index for each station Eras e . A
separately identified: the previous timesteps to consider TGs 975 23.2914 213
Impacts of different features on Sea level maxima using mutual index
Mutual Information between Features-Narva Mutual Information between Features-Oulu
0.04 0.00 0‘040»05 032 022 ] U wind . 0.05 0.00 0.04 0.35 0.02 008 0.07 04 U,V,p,SWh, U,V,p,SWh,
006 004 000 045 005 O : : u,v,p,swh, . u,v,p,swh, u,v,p,swh, .
V Wind 1 0.03 0.04 000 034 0.03.0.03 . u,V’p,SWh Wlnd gust, . Wlnd gust,
0.11 046 0.00 0.04 O. X 008 035 034 000 0.03 0.08 0.07 Ji¥ - Wlnd QUSt BSI Wlnd gLISt’ BSI BSI BSI
0.02 0.05 0.05 0.04 0.00 3 . L runoff ¥ 0.03 0. 0.03 O 0.00 0.01 0.04 5 i 5 3 5 5 5 5

02 .03
0.03 0.01 009 004 003 X X X 8si X 0.02 0.03.0‘08 0.01 0.00 0.03

85I =
£ 0.10 011 . 010 o. g 0 SWH X 0.06 0.07 0.03 0.07 O { 0.00 0.
\ , d ) .
[} . i B 5 SLM X .09 D X Y
: |

109" 0.06 O.




PROPOSED STRATEGY FOR SEA LEVEL MAXIMA
FORECASTING

1
4. Implementation |
1. Identi 1 ion: : .
dentify study locations Hybrid DL/Baseline ML Models
Narva, Ristna, Oulu, Hyperparameter
Kungsholmsfort, Greifswald, Define Model Tuning and
Wiadyslawowo across Baltic Sea Set up and find model compile Model
: : ; trainin
l optimal lag using Bayesian 9
R o Optimization
2. Data Collection
0.0 0 i Atmospheric Pressure H
tra”"ng perlOd. 1971 '01 '01 tO 2007‘05'27 i Wlsr:snsigce:r:awr::’::‘:i;:s! | CNN- | CNN- Random Mumple-Layer Extreme Gradient
H H ind- ‘itati i LSTM | GRU Perceptron i
validation period: 2007-05-28 to 2015-03-14 { | ecolaton e svsponei: | | i ./ Sopstng: |
i o Baltic Sea Inde | T L
test period: 2015-03-15 to 2022-12-31 v ;wEalic:Sos Index: | Lo [ —
XGB @] S
Optimized value 1 R mm o e e e e SRS AR
Hyper- . - - = e | RF valuation
Models parameters Definitions Ranges ,’;‘:ers\::; Ristna | Oulu K;:gosgol wla;zrjlaw Gr:ll(:sw ¥ N 2 hy | = e N - :
- = Output s 3 = compare models using
Number of Number of neurons in .g | B ! 2 i B
i hidden layers, controls | (10, 100) 24 100 10 16 19 10 £ — § / oupe fics and find best model
idden neurons model complexity 12 __[Twen z o » E
— [ j 3 Tron g = ooy
MLP alpha Reg”'a”fa"°'r‘f.‘§fm © 1 (001,005 | 00221 | 0.0458 | 0.016 0.01 0.0437 0.037 E ° 3 \ L&, psand storm event
Prevent overmitting Multi-variate Time Series forecasting & 3 o ° & lon performance
Jeamni te i Starting learning rate, SLM | i / 5 1 i - p 3
ea’"'"ngi;’a 1| controls how fast the ©o1,1) | o001 | 001 | o001 0.01 001 001 of SL| - '\ | % / = analysis
model learns | e ® 0 9
Number of Number of trees in the | (50, 100, SLM L] o \ ‘ g e return periods of : T T T R L
Trees forest showing model | 150,200, | 300 150 300 100 300 300 A o I 1 il e o ents to find models |- . 56 +2018.09-26°, ESL: 163cm
(n et i 300) . ! : : Extracting Inputs imati ; - :
RF Tree Depth Maximum depth of each @.5,7,10) 10 7 10 10 10 10 9 Inp ‘stimation levels 7 ol
(max_depth) tree o Pressure MLP s
min_samples_s Minimum samples (2,5, 10, {
plit required to split a node 20) 20 2 2 2 5 2
Number of . (50, 100, .
Trees N”zﬂiz‘s’f(:’r‘;;’:;'"g 150,200, | 150 | 100 | 150 200 200 200 awind_. g Jainabili
(n_esti 300) | ) o KPlaINADI ity
XGB Tree Depth N < - Activation Function(Relu)
(max_depth) Maximum de;?th of trees | (3,5,7,10) 7 3 5 5 3 3 — § 7 ; (2 ‘ i 7_; SHA P
Learning rate | COMtrols thesize of each | o) 1) g 14gs | 0170 | 0.0 0.129 00176 0.124 i ] s A 4
step during training i = "
Number of Number of convolution ) ;lrw.
N filters, determines (8,128) 10 17 8 8 8 8 BSI
filters : - " B
feature extraction M/W\ {
i [ReLU', l
- Function used to s ; .
acuva?mn activate neurons (e.g., Itanh ! ‘tanh’ Leakyl LeakY "tanh' ‘tanh’ ‘tanh’ SWH
CNN- function ReLU) Leaky ReLU’ ReLU!
ReLU] WW * CNN-LSTM and CNN-GRU LSTM cell
LSTM -
Number of neurons in
Dense units the fully connected (16, 128) 124 125 16 58 107 16 by
layer
Number of units in e
LSTM units LSTM layer, controls (16, 128) 16 89 16 16 16 16 ¢
memory capacity o
Number of Number of convolution Mutiveriate e o3 Daipuc
filters filters (8.128) 8 126 8 8 5 8 iy 8 -
[ReLU", E. £ A . —2 A7)
activation Activation function for 'tanh’, ‘Leaky | 'Leaky tanh' anh ‘Leaky ‘Leaky e B i B i ° —
function neurons ‘Leaky ReLU' ReLU' ReLU' ReLU' ™ o
CNN- ] ReLU] 8
GRU Dense units Neurons in the fully (16, 128) 16 35 16 16 16 128
connected layer
GRU cell
Number of units in the =
GRU units GRU layer, controls (16, 128) 16 16 26 16 16 16 Gt |
memory i { U (et




MODEL PERFORMANCE

RESULTS

Train R?

Train RMSE

Lithuania

Test R?

Test RMSE

(wd) 3swy

(wd) ISy

Station

mm RF ww MLP == XGB == CNN-LSTM == CNN-GRU
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RESULTS: STORM EVENT DETECTION

= Storm events are recognized as a major contributor to > Xavier (October 4-6, 2017, 1186 <cm at
SLM WIladyslawowo)

= Five major recent storm surge events in the Baltic Sea i'ear‘lf)r\](‘]a”“ar{22—4é§f;8iég59 cm taéN&}ffva) y
2017—2020 are examined for their forecasting performance apeli (January 1-2, , 169 cm at Greifswald)
using ML/DL Lorenzo (October 2—-7, 2019, 107 cm at Narva)

_ : : and Ciara (February 3-16, 2020, 161.30 cm at Oulu)
» Different storms peaked at different stations

YV VY

—— actual w=ai:RE - MLP - XGB === CNN-LSTM ~== CNN-GRU — actual -=- RF === MLP -== XGB === CNN-LSTM —-=- CNN-GRU
Storm Xavier (2017) Storm Eleanor (2018) Storm Aapeli (2019) Storm lorenzo (2019) Storm Ciara (2020) Storm Xavier (2017) Storm Eleanor (2018) Storm Aapeli (2019) Storm lorenzo (2019) Storm Ciara (2020)
i 70 60 i~
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LONG TERM FORECAST:

SLM (cm)
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EXPLAINABILITY RESULTS: CNN-GRU MODEL

SHAP feature importance bar plot (Lundberg and Lee, 2017)
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Western locations more affected by atmospheric forcing from the North Atlantic than the eastern stations, usually
more localized effects are frequent. Highest SLM found on the eastern section
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SUMMARY




IMPROVING ON HYDRODYNAMIC MODELS
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SOURCES OF SEA LEVEL DATA: VERTICAL REFERENCE

Time-domain variations
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Question/Challenge:

e Coastal areas can be
corrected by TG but what
is the procedure in the
offshore areas?

o WMMMW,‘MMWM
W A

-20 -—————————_

—— Kunda station (Gulf of Finland)
— Ustka station (Southern Baltic Proper) |
——— Kaskinen Adskar (Bothnian Sea)

TDBias (cm)
15 20 25

Period (day)

Observations: Differences:
Difference can be as much as -20 to 40cm * Spatial and temporal resolution differs
» Stations follows similar pattern and * Vertical datum differs

frequency of error » Different mode of measurement



METHOD FOR CORRECTING HDM BIAS (COASTAL TO OFFSHORE)

Method I: use of geoid-referenced TG network
* Use a dense close-loop network of TGs with a common geoid-based reference datum (i.e., BSCD2000).
* Propagate HDM discrepancies from stations to offshore using a bilinear interpolation at each time instant.

TG treatment (73 TG)
by adopting a common
geoid-based ref. datum

)

Determine HDM
time-domain bias
at TG stations

\
—l/

Determine HDM
spatial-domain bias
using bilinear
interpolations

)

Corrected HDM
by removing
spatial bias

)

Evaluation
Comparing corrected
model with SA data, and
comparing various
interpolation techniques

Method II: use of deep learning (DL) model in a way that: E(p, 1,t) = (¢, A, t) + RefBias

where:

€ is HDM modelling errors (can be predicted by a DL model)
RefBias is the differences between HDM'’s reference surface and a particular geoid model.

Train a DL model on

modelling errors (&)

using TG records and
spatiotemporal variables

Y

Remove HDM errors
by predicted
modelling error (€)

Vertical Ref. Bias
by comparing
corrected HDM
and SA data
Refbias = 18.311.9 cm

Y

Corrected HDM
based on new
realizations of the
EVRS

Y

Evaluation
Comparative
passement
between data
sources

—




RESULTS: METHOD 2, DEEP LEARNING (WAVENET APPROACH)

E(@,A t) = (@, A, t) + RefBias

(a) — TG records (DTrg) ’| HDM error & (Target)
M A W. \um iy r —
£ 20y A\ i " ‘. d ‘,L iy At %‘“ﬂ A HDM (DTypm) [T | Train DL model and
w o ! f i T‘Iv 1 ’ Tl Iﬂ 1y il i i r model validation
2 |‘ m I ﬂ [ ’ Input Variables (x) 34
(Pre-trained) DL
Jan 2017 Jan 2018 Jan 2019 Jan 2020 Jan 2021 — SA data (DTs,) Model & = f(x)
(b) . | Date J, 3 J'
= ——TG37 (Bothnian Bay) I‘I:‘\ RefBias |+ Corrected HDM
[ —— TG19 (Southern Baltic Proper) L <
= ’ TG48 (Gulf of Finland) i | \ I DTfpm (@, A, 1)
60 g 2 | \ ] 1L T
E‘ 1 \7[\\( Vertical referencing HDM to a common vertical
P S S it bt 8 fhw"’" H datum with observations, DT, IEDRA?[f (p, A, t)
107 10° 10° 102 ¥
Period (day) _': Evaluation of the corrected HDM
Highlighting inconsistencies between datasets

Southern
Baltic Proper

J @ TG stations (training set)
‘ © TG stations (validation set)|
‘ @® TG stations (test set)

\




METHOD II: DETERMINE RELEVANT INPUTS/VARIABLES

, Tempor g atial
E(p, A, t) =¢e(p, A t) + RefBias al
Zonal wind (Uwind) m/s Hourly 1 NM Sourced from Nemo-Nordic
Meridional wind m/s Hourly 1 NM dataset
(Vwind)
Sea surface °C Hourly 1NM

temperature (SST)

Sea surface salinity psu Hourly 1 NM
(SSS)

Ice fraction (Ice-frac) % Hourly 1 NM

Zonal wind stress (X;) Pa Computed at the HDM grid points with an hourly

Meridional wind stress Pa temporal resolution using U and Vwind

(Ys)
Ekman pumping (w- m/s
Ekman)
Sea surface pressure Pa 3- 5.5 km Copernicus:
(SLP) hourly https://doi.org/10.24381/cds.6
22a565a
375 : Precipitation water cm Hourly 0.25° MTPR was sourced from
[ IRMSE (total) A
a7 RMSE (training) 099 col. (n,) Copernicus:
%FE;‘“SE(Va"dat"’”) https://doi.org/10.24381/cds.a
369 ,_ 0.9 dbb2d47
= 36 Significant wave m Hourly 2 km Copernicus;
X — 0es height (SWH) https://doi.org/10.48670/moi-
B > T = 00014
a5 | Al 1] 0.8 Semi-diurnal tide (M2) cm Computed at Aviso:
- - the HDM grid https://www.aviso.altimetry.fr/
3.45 I 0.75 Diurnal tides cm . :
I Low tides em points with an
Sond I R | O O 0.7 Steric height changes cm hourly Monthly profiles of S and T were
3.35 (ms) tempo!‘al sourced from SHARKweb:
e&“@z@(’«& %é‘ & resolution https://sharkweb.smhi.se/
< ,é{‘tz
Sequential Feature Elimination Sea level Variab”ity cm ComPUted

(msdDT..)


https://doi.org/10.24381/cds.622a565a
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.48670/moi-00014
https://www.aviso.altimetry.fr/
https://sharkweb.smhi.se/

Original HDM
DTypu (9,4, t)

Batch Norm.

Hidden Layer — = —_— = ‘ e
Dilation=8 — ‘ [oropout |

num of SA points

Dilation=2 |

Hidden Layer:
[] sequential input variables
[] causal conv. hidden Layers
[] Fully connected Layers

Receptive Field [] Target time series (HDM error) 6 8 10 12 14 16 18 20 22 24 26
: Bias of Corrected HDM from 2017.0 to 2021.5 (cm)
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= Ocean model shows that the
simulated volume transport at the
BSO increases for the period 1975—
2021. Thus bringing warmer waters
into the Atlantic

APPLICATION TO BARENTS SEA

5000

= We attempted to reconstruct the
-4000 temporal evolution of the BSO flow
based on local time series of
surface winds using a multivariate
deep neural network.

Denmark Strait = 1= =

! = By combining expert knowledge

E\
[
€ with trial and error, we find that in
2000‘% order to reconstruct the flow (a) all
o wind data backlogged as far as 21
days and, occasionally, even as far
back as 30 days is required and (b)
daily resolution is insufficient, as it
. fails to capture the full amplitude of
Faroe Shetland A the trend in BSO flow
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SUMMARIZING

« Hydrodynamic Improvements
= A temporal-spatial bias exist in HDM that consists of a reference bias and

modelling errors

Machine learnin _usin% WaveNet apProach can: (i) increase accuracy of
Nemo)Nordlc; (in)identity and quantify errors (reference bias and modelling
errors

DL model identified seven main input variables: sea level pressure, diurnal
and low tides, zonal and meridional wind, steric height, and sea level

variability for predicting the modelling errors

Machine Learning depends on input variables considered so often
generalized approach utilized. So location dependent variables should also

be considered e.g. Ice conditions

DL model is successful in estimating the low-frequency HDM errors,
including annual and seasonal cycles. Further efforts are required for high-
frequencCy errors.

Corrected HDM improved by a factor of 2, RMSE of the Nemo-Nordic model
relative to TGs improved from 7.6 cm to 3.4 cm and

Satellite altimetry crucial for validation especially in offshore areas
We applied similar approach to the Barent Sea Opening
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