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MOTIVATION I

▪ Consistent and accurate sea level is a key component

for:
➢ Safe navigations, coastal protection, marine engineering, climate change, and

coastal city flooding

➢ Operational forecasting systems and planning decisions

➢ Important for Digital Twin applications

▪ Sea level maximas and extremes (SLM) are a major

contributor of coastal flooding, erosion, infrastructure

damage etc.

▪ Based on climate projections of IPCC sea level is rising

and extremes are expected to increase with magnitude,

frequency and duration

▪ This signals the need for adaptation and mitigation solutions

▪ Forecasting of sea level and their extemes are necessity both on

the short-term and the long terms perspective.

▪ Machine and deep learning (ML/DL) approaches can be utilized for

some of these solutions

West gate on Sea, England (photo credit: Max Montagut, www.flickr.com)

IPCC, 2019
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MOTIVATION II: MACHINE LEARNING AND DEEP LEARNING

▪ Massive data sets (satellites, in-situ, models)

▪ Due to advancements in computing technology (language processing, computational power,

etc.), machine learning (ML)/Deep learning (DL) algorithms have been widely acknowledged as

robust tools in finding patterns and forecasting in various fields (Zhou et al., 2023).

▪ Technological change and need of society are increasing--→ digital transformation
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OUTLINE

▪ Background of ML/DL

▪ Sealevel forecasting in the Baltic Sea

▪ Extreme sea level forecasting in Baltic Sea

▪ ML method to improve hydrodynamic model applied to Baltic and Barent 
Sea
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MACHINE LEARNING BACKGROUND 

▪ ML/DL: computer learns to perform tasks based on experience 
it gains during training.

▪ Basic components:
▪ Data (as input)

▪ A model (i.e a hypothesis): to predict 
quantities of interest (model chosen by user)

▪ Loss function: the discrepancy (difference 
between prediction and observed)

▪ An iterative approach is used until the loss 
function is minimum

▪ Evaluation: test data

Train: fitting parameters of model
Validation: internal (tuning 
hyperparameters) 
Test: final evaluation
External test set: independant source 
evaluation
Ratio: 70% train, 30% test

External source 
(test data)
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ML COMPONENTS

Component Role

Input Data
Data source used to train the model; quality heavily impacts performance
(e.g hourly sea level data) 

Model Mathematical structure that learns a mapping from input to output.

Prediction Output of the model (e.g., sea level forecast for 24 hours).

Loss Function Quantifies the error between predicted value and ground truth.

Ground Truth The actual correct output (labels) used for comparison.

Optimization Adjusts the model (weights/parameters) to reduce the loss

Training Loop
Repeated process of prediction → error → update, until model performance is 

satisfactory.
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ARTIFICIAL INTELLIGENCE, MACHINE LEARNING, DEEP 
LEARNING AND NEURAL NETWORKS

▪ AI is the main system. Machine learning is a subset of AI. Deep learning is a subfield of 
machine learning, and neural networks make up the backbone of deep learning algorithms.

▪ DL is generated in almost the same way as ML, but it has many more levels, so that it attempts 
to function similar to brain, in that it can take an input, processes it and then make its own 
intuitive decisions/predictions. This, makes it ideal for large and nonlinear data processing.

▪ Convolutional Neural Networks (CNNs) and Recurrent-based Neural Networks such as Long 
Short-Term Memory Networks have been well-known DL methods.
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EXAMPLES OF STUDIES

Category Method / Architecture Typical Applications

AI (General) Rule-Based Expert Systems
Medical diagnosis support, navigation systems, fault 

detection

Knowledge Graphs
Search engines, recommendation systems, biomedical 

discovery

Machine Learning (ML) Linear / Logistic Regression Economic forecasting, medical risk prediction

Decision Trees Fraud detection, medical decision support

Random Forest (RF)
Remote sensing classification, finance risk assessment, 

anomaly detection

Gradient Boosting (XGBoost, LightGBM, CatBoost)
Kaggle competitions, financial forecasting, ranking 

systems

Gaussian Process Regression (GPR)
Time series prediction, robotics control, uncertainty 

quantification

Deep Learning (DL) Convolutional Neural Networks (CNN)
Image recognition (e.g., ImageNet), facial recognition, 

medical imaging

Recurrent Neural Networks (RNN), LSTM, GRU Speech recognition, language modeling, stock prediction

Transformers (BERT, GPT, ViT) Natural language processing, translation, vision tasks

Graph Neural Networks (GNNs)
Social network analysis, drug discovery, traffic 

prediction

Deep Reinforcement Learning (DQN, PPO, A3C) Robotics, AlphaGo (game playing), autonomous driving



9

ML/DL COMPONENTS:  INPUTS/FEATURES

▪ DL models are renowned for their ability to automatically extract influential features and patterns 
from raw data, making them suitable for complex tasks such as time series analysis

▪ Thus it is important to identify the most influential inputs affecting the target variable:

MI Index

I(X;Y) = Σ Σ p(x,y) · log( p(x,y) / (p(x)p(y)) )

p(x,y) = joint probability distribution of X and Y

p(x),p(y) = marginal distributions

If X and Y are independent → I(X;Y)=0 (no shared information).

If knowing X perfectly predicts Y→ I(X;Y) is high

Pearson correlation

r = Σ ( (xᵢ - x̄)(yᵢ - ȳ) ) / ( sqrt( Σ (xᵢ - x̄)² ) * sqrt( Σ (yᵢ - ȳ)² ) )

r=+1 → Perfect positive linear relationship

𝑟=−1 → Perfect negative linear relationship

r=0 → No linear relationship

Methods to determine most influential inputs: 

▪ Statistical boxplots: mean, median, interquartile range, and extremes

▪ Pearson correlation coefficient (written as r):measures the linear relationship between two 
variables 𝑋 and Y. Can assist in prevent overfitting

▪ Mutual Information (MI) index: to examine relationships between variables. It measures how 
much knowing one variable reduces uncertainty about another variable. Effective in detecting 
nonlinear relationships.

▪ Aprior knowledge based on previous studies

▪ wrapper-type sequential feature elimination algorithm 
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As sea surface temperature increases, the contribution of thermal expansion to sea 
level rise accelerates
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ML/DL CONPONENTS: INPUTS AND METHOD

Various ML/DL approaches can be utilized:

▪ Univariate (i.e. it considers only the target variable) e.g:using traditional ML models such as 
linear regression, regression tree, ensemble

▪ Multivariate frameworks (where several vadeep learning, Convolution Neural Network, random 
forest, Recurrent Neural Networks (RNNs), and hybrid CNN-RNN models with respect to the target 
parameter are considered) e.g

Multivariate forecasting methods generally outperform univariate models

Supervised Learning:The model is trained on a labeled dataset, meaning each input comes with 
the correct output. Learn a mapping function from inputs (X) to outputs (Y)
Example: To forecast sealevel every 24 hours

Unsupervised learning: The model is trained on unlabeled data — only the inputs (X) are given, 
without known outputs (Y). Discover hidden structures or patterns in data
Example: using satellite SST to determine hotspot patterns of  hot and cold regions 
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ML METHOD: RANDOM FOREST

▪ The RF algorithm is based on the bagging 
(Bootstrap Aggregating) technique.

▪ Generates multiple decision trees based on 
random subsets of the data. 

▪ Each tree makes a prediction (like taking 
votes)

▪ The forest combines all votes (majority vote 
for classification, average for regression).
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DL METHOD: CONVOLUTION NEURAL NETWORK

DL methods such as Convolution Neural Networks (CNN’s) and Recurrent 

based Neural Network applied successfully in prediction sea level  tasks

Three  primary layers:

▪ Convolution layer: most critical step usually a linear process. Input data assigned 

weights and biases (filter or kernel). ReLu function (for nonlinearity)

▪ Flattening layer: produce a feature maps

▪ Fully connected layer: flattened data passed to CNN. Models are capable of 

spatio-temporal connections  and discern between dominating and low-level 

characteristics
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METHODS
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OVERFITTING

Overfitting in machine learning happens when a model learns the training data too well, including 
its noise, outliers, and random fluctuations, instead of just the underlying patterns.

▪ Signs

• Performs very well on training data (low training error).

• Performs poorly on new/unseen data (high test/validation error).

▪ Causes of Overfitting

• Model is too complex (too many parameters compared to data size).

• Not enough training data.

• Training for too many epochs.

• Including irrelevant features (noisy data).

Example: Studying for an exam if you memorize past questions word for word, you’ll ace practice tests but fail 
on new questions

▪ Ways to Prevent Overfitting

• Simplify the model (reduce parameters, prune trees, etc.).

• Regularization (dropout, weight decay).

• Early stopping during training.

• More training data or data augmentation.

• Cross-validation to tune hyperparameters.
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HYPERPARAMATERS

▪ The selection of the hyperparameters influences the model's architecture, training 
process, and overall performance. This is one of the most important steps to obtain better 
model accuracy, achieve best possible performance  and can prevent models from 
overfitting 

▪ Hyperparameters, which are predetermined settings (e.g. learning rate, number of layers, 
batch size, etc.), must be set before the learning process. 

Several optimization approaches for hyperparameter 
tuning 

▪ trial-and-error

▪ random search

▪ grid search

▪ genetic algorithms (Holland, 1992), 

▪ particle swarm optimization algorithms (Kennedy and 
Eberhart, 1995), 

▪ Bayesian optimization (BO) (Snoek et al., 2012)
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HYPERPARAMATERS METHODS
Method How it Works Advantages Disadvantages

Trial-and-Error

Researcher manually tests different 

hyperparameter values and adjusts based on 

performance.

- Simple to implement- Uses 

domain intuition

- Very slow- No systematic 

exploration- Not scalable

Grid Search
Tests all combinations of hyperparameters on 

a predefined grid.
- Systematic- Easy to implement

- Computationally expensive-

Inefficient in high dimensions-

Wastes trials on unimportant 

parameters

Random Search
Randomly samples hyperparameter values 

from defined ranges.

- More efficient than grid search-

Covers more diverse space-

Simple automation

- Still requires many trials- No 

memory of past results

Genetic Algorithms 

(GA) (Holland, 1992)

Mimics evolution: populations of 

hyperparameters evolve through selection, 

crossover, mutation.

- Good at exploring large, complex 

spaces- Can escape local optima

- Computationally expensive-

Many hyperparameters to tune in 

the algorithm itself

Particle Swarm 

Optimization (PSO)

(Kennedy & Eberhart, 

1995)

Models hyperparameters as particles moving 

through space, guided by best performers.

- Efficient for continuous spaces-

Good balance of 

exploration/exploitation

- Can get stuck in local optima-

Sensitive to parameter choices

Bayesian 

Optimization (BO)

(Snoek et al., 2012)

Builds a probabilistic model of performance, 

chooses next hyperparameters based on 

expected improvement.

- Very sample-efficient- Finds good 

hyperparameters with fewer trials-

Strong theoretical basis

- More complex to implement-

Slower for very high-dimensional 

spaces
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EVALUATION

𝑅𝑀𝑆𝐸 𝜙𝑠,𝜆𝑠 =
σ𝑡=1
𝑛 ෢𝐷𝑇 𝜙𝑠,𝜆𝑠,𝑡 − 𝐷𝑇 𝜙𝑠,𝜆𝑠,𝑡

2

𝑛

𝑅2 = 1 −
σ𝑠=1
𝑚 σ𝑡=1

𝑛 ෢𝐷𝑇 𝜙𝑠,𝜆𝑠,𝑡 − 𝐷𝑇 𝜙𝑠,𝜆𝑠,𝑡
2

σ𝑠=1
𝑚 σ𝑡=1

𝑛 ෢𝐷𝑇 𝜙𝑠,𝜆𝑠,𝑡 − 𝐷𝑇 𝜙𝑠,𝜆𝑠

2 ,

𝑤ℎ𝑒𝑟𝑒 𝐷𝑇 =
1

𝑛
෍

𝑡=1

𝑛

𝐷𝑇 𝜙𝑠,𝜆𝑠,𝑡

Root Mean Squared Error (RMSE): RMSE provides a measure of the typical prediction
error, with higher weight given to larger errors. The formulation is defined as below

Coefficient of Determination (R-squared): R-squared quantifies the proportion of
variance in the sea level data that are captured by the model predictions. The formulation
is defined as below:
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SEA LEVEL FORECASTING: SHORT TERM  (HOURS, DAYS)

References
Rajabi-Kiasari, S.; Ellmann, A.; Delpeche-Ellmann, N. (2025). Sea level Forecasting using Deep Recurrent Neural 
Networks with High-Resolution Hydrodynamic Model. Applied Ocean Research, 157, #104496. DOI: 
10.1016/j.apor.2025.104496.

Rajabi-Kiasari, Saeed; Delpeche-Ellmann, Nicole; Ellmann, Artu (2023). Forecasting of absolute dynamic topography 
using deep learning algorithm with application to the Baltic Sea. Computers & Geosciences, 178, #105406. DOI: 
10.1016/j.cageo.2023.105406.

Jahanmard, Vahidreza; Hordoir, Robinson; Delpeche-Ellmann, Nicole; Ellmann, Artu (2023). Quantification of 
Hydrodynamic Model Sea Level Bias Utilizing Deep Learning and Synergistic Integration of Data Sources. Ocean 
Modelling, 186, #102286. DOI: 10.1016/j.ocemod.2023.102286.



20

FACTORS THAT AFFECT SEA LEVEL

Several components based on different time frames affect the sea level dynamics in the Baltic Sea. 

▪ Long term (decadal, centuries):

• Global sea level change (due to thermal sea water expansion and the melting of glaciers) will influence 
the Baltic Sea’s level

• Variation in temperature, precipitation, and evaporation is expected to mostly exert influence on a 
decadal time scale 

▪ Short-term (yearly, seasonally, daily, etc.):

• Major Baltic inflow, meteorological factors such as wind speed, sea level pressure, tides

• River runoff also affects the water balance, with the biggest freshwater contributor being the Neva River 
located on the eastern side of the Baltic 

• Sea ice

▪ Much shorter time frames (e.g., weekly, daily, and hourly)

• Localized events also affect the sea level. Most of these events tend to be influenced by 
meteorological factors especially the winds

• Surface waves

• Storm surges

▪ Including relevant components enhances the accuracy and performance of the models

▪ HOWEVER INCLUDING TOO MANY INPUTS CAN LEAD TO OVERFITTING AND REQUIRES 
INCREASED COMPUTER PROCESSING RESOURCES



21

CASE STUDY: GULF OF FINLAND, BALTIC SEA

▪ To forecast dynamic topography multi-step time ahead (3h, 6h, 9h, 12h, 24h)

▪ Several inputs were examined:winds, temperature, salinity, pressure, dynamic topography

෢𝐷𝑇 𝜙𝑠,𝜆𝑠,𝑡+(1:𝛥) = 𝑓 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝜙𝑠,𝜆𝑠 , 𝑢𝑤𝑖𝑛𝑑 𝜙𝑠,𝜆𝑠 , 𝑣𝑤𝑖𝑛𝑑 𝜙𝑠,𝜆𝑠 , 𝑆𝑆𝑇 𝜙𝑠,𝜆𝑠 , 𝑆𝑆𝑆 𝜙𝑠,𝜆𝑠 , 𝐷𝑇 𝜙𝑠,𝜆𝑠 𝑡−𝑤:𝑡

, 𝑤ℎ𝑒𝑟𝑒 𝑠 = 1: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑟𝑖𝑑 𝑝𝑜𝑖𝑛𝑡𝑠

w, Δ, and 𝑓 define the temporal lag, the lead time (also called forecast horizon) and the mapping function, respectively

Variable
Spatial 

resolution

Temporal 

resolution
Source

Wind speed (u 

and v)
1nm Hourly Nemo Nordic

Surface 

Pressure
0.25°×0.25° Hourly Era5

Sea Surface 

temperature
1nm Hourly Nemo Nordic

Sea Surface 

Salinity
1nm Hourly Nemo Nordic

Dynamic 

Topography
1nm Hourly

Corrected Nemo 

Nordic

Sea Surface 

Height
300m

27 days revisiting 

time, 20Hz data at 

each pass

Along-track 

Sentinel 3A and 

3B (EUMETSAT)

Data 2017 to 2019 (85% for train and 15% for test)
Train data : 2017-01-01 to 2019-07-20
Test data: 2019-07-21 to 2019-12-30
External validation SA:  2019-07-21 to 2019-12-30

DT has been referred to the European Vertical Reference System (EVRS) which the tide 
gauges and geoid model referred to
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CASE STUDY: CHOOSING INPUTS

▪ Box plots of mean, median, extremes, IQR
▪ Pearson correlation coefficients were calculated for all input components across distinct seasons (spring, 

summer, winter, autumn)

Variable
Spatial 

resolution

Temporal 

resolution
Source

Wind speed (u 

and v)
1nm Hourly Nemo Nordic

Surface 

Pressure
0.25°×0.25° Hourly Era5

Sea Surface 

temperature
1nm Hourly Nemo Nordic

Sea Surface 

Salinity
1nm Hourly Nemo Nordic

Dynamic 

Topography
1nm Hourly

Corrected Nemo 

Nordic

Sea Surface 

Height
300m

27 days revisiting 

time, 20Hz data at 

each pass

Along-track 

Sentinel 3A and 

3B (EUMETSAT)
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CASE STUDY: DL MODELS 

Two recurrent neural network-based models such as the Long Short-Term Memory Networks (LSTMs), and the Gated 
Recurrent Unit (GRU)
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CASE STUDY: HYPERPARAMATER OPTIMIZATION

▪ Trial-and-error method 

Model parameters Description Chosen hyperparameter

LSTM/GRU Units
Specifies the dimensionality of the model's 

internal state. 
512

Activation Functions 

The activation function is applied after each 

layer in the model to add nonlinearity. The 

common choice for RNNs is 'Tanh' and Sigmoid.

'default'

Batch Size 

Determines the number of samples used in 

each forward and backward pass during 

training. 

128

Number of Training Epochs

Specifies how many times the model will be 

exposed to the entire training dataset during 

training. 

50

Loss Function 
Determines the objective function that the 

model is trying to minimize during training. 
'MSE'

Optimizer 

The optimizer determines the specific algorithm 

used to update the model's weights during 

training. Common optimizers include Adam, 

RMSprop, and Stochastic Gradient Descent 

(SGD). 

'Adam'

Dropout Rate Regularization

A regularization technique that helps prevent 

overfitting. It specifies the proportion of 

neurons or units that are randomly dropped out 

during training, forcing the model to be more 

robust.

0.1

Kernel Regularization

Technique used to limit the model's weights 

with certain values. It adds a penalty term to 

the loss function based on the magnitude of the 

weights. Common regularization techniques 

include L1 and L2 regularization. The 

regularization Strength hyperparameter controls 

the strength of the kernel regularization

L2, 0.01
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CASE STUDY: RESULTS (OVERVIEW)

▪ Both LSTM and GRU methods are strong choices for sea level forecasting with RMSE <6 CM. GRU 
performed slightly better with R2 and RMSE of 0.93, 4.96 cm

▪ Main difference between the LSTM and GRU model was that the GRU model has a simpler 
method in storing and updating the connections between the different variables resulting in 
fewer complexities and less computing time.

Horizons 

(hours)

Models
GRU LSTM

R2 RMSE (cm) R2 RMSE (cm)
3 0.96 3.55 0.95 4.13
6 0.95 4.41 0.94 4.85
9 0.92 5.16 0.92 5.47

12 0.91 5.67 0.90 5.87
24 0.89 5.99 0.89 6.17

average 0.93 4.96 0.92 5.3
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▪ The input component (v winds, sea 
surface salinity, river discharge) 
were not included in the final 
variable selection

▪ This exclusion may have 
contributed to the poorer 
performance experienced at
eastern and other sections
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CASE STUDY: SPECIFIC SITE RESULTS

▪ Both methods forecasted the normal sea level very good
▪ Both experience difficulties with the sea level maxima/extremes
▪ Insufficient representation of maximum/extreme events in the training dataset 

(skewness towards normal sea levels than extremes)
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CASE STUDY: EXTERNAL TEST DATA WITH SATELLITE ALTIMETRY

▪ External test data was performed with S3A and 
S3B

▪ GRU-forecasted DTs and the HDM DT are for most 
occasions in good agreement with SA DT values, 
with the discrepancy of lower than 5 cm for tracks 
S3A-83, S3A-300, S3A-414, S3B-83 and S3B-197.

▪ However, the GRU model had poorer validation 
results for tracks S3A-739, S3A-186, S3B-739, and 
S3B-299 (10-15 cm). 

▪ The reason for these larger discrepancies may be 
due to:

• HDM model not accurately modelling the 
observed ocean dynamics. 

• HDM corrected DTs had better consistency with 
Sentinel 3A tracks compared to the Sentinel 
3B, which is also in agreement with previous 
results (Mostafavi et al., 2023).
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FORECASTING OF SEA LEVEL EXTREMES 
(SHORT TERM & LONG TERM)

Reference
Rajabi-Kiasari, S.; Ellmann, A.; Delpeche-Ellmann, N. Soomere, T. (submitted, Under review ). Forecasting Sea Level Maxima using 
Machine Learning with Explainability and Extreme Value AnalysisSea level Forecasting using Deep Recurrent Neural Networks with 
High-Resolution Hydrodynamic Model, International Journal of Applied Earth Observation and Geoinformation
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MACHINE LEARNING AND DEEP LEARNING

▪ Sea level maximas and extremes (SLM) are a major

contributor of coastal flooding, erosion, infrastructure

damage etc.

▪ The SLM are often characterized as (i) occurring

suddenly and usually having a time scale from minutes

(rogue waves, edge waves) to a few days (storm surges);

(ii) being site-specific rather than basin-wide (Pindsoo et

al., 2020); (iii) primarily driven by very strong storms

▪ Semi-enclosed sea areas such as (Baltic Sea,

Meditteranean, Caspian Sea) most at risk for SLM, most

impactful on coastal areas that affects several countries.

▪ Influenced by compound events such as waves, tides

storms that influence each other

West gate on Sea, England (photo credit: Max Montagut, www.flickr.com)
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CHALLENGES

Challenges:

▪ Machine/Deep Learning (ML/DL) models have been shown to be efficient in forecasting mean sea level,

▪ ML/DL models often under-estimate sea level maxima/extremes and there exist uncertainty on the

influence of the drivers. Possible reasons:

➢ Lack of adequate representation of extreme events in training data

➢ Selecting of best hyperparameters and optimizing models are crucial steps in developing ML/DL

models for capturing complex peak patterns (Li et al., 2024).

➢ Compound events, whereby some inputs not considered in model

➢ Some extreme conditions such as storm surges, seiches due to their frequency and complexity are

challenging to model

Opportunities/Objectives:
➢ Machine/Deep Learning approaches that can specifically examine SLM

➢ Deeper insight into the role of the drivers influencing these extremes by using explainability analyis

➢ Linking ML/DL results with traditional methods such as extreme value analysis gives deeper insight into the long-term forecasting
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CASE STUDY: EXTREMES BALTIC SEA

SLM on Baltic coasts occur at different locations with different

influential forces which can be due to:

▪ Initial sea Level (filling-up or prefilling) of the Baltic Sea

▪ Wind Stress: magnitude, direction and duration

▪ Low-Pressure Systems: Storms

▪ Other factors: surface waves, water exchange between the Baltic

and the North Sea, precipitation, seasonal changes in water

density, and the occurrence of seiches (Weisse and Weidemann, 2017)

Characteristics:

▪ Typical SLM in the Baltic Sea is 0.8 m

▪ SLM in the Baltic Sea are more pronounced in the winter

season due to the seasonal cycle of wind

▪ Wave set up may influence the SLM

▪ Maximum SWH of 8.2 m was recorded in December 2004 in the

northern Baltic Proper
Station

Latitude 

(°N)

Longitude 

(°E)
Country Datum

Missing 

data rate

Conversion 

to 

BSCD2000 

(cm)

Source

Narva 59.4691 28.0421 Estonia EH2000 0.1% -500
EEA 

(2024)

Ristna 58.9212 22.0552 Estonia EH2000 0.3% -500
EEA 

(2024)

Oulu 65.0403 25.4182 Finland N2000 0 -
FMI 

(202)

Greifswald 54.0928 13.446 Germany DHHN92 0 -496.9
BSH 

(2024)

Wladyslawowo 54.7968 18.4187 Poland
PL-EVRF2007-

NH
0.5% -494.4

BOOS 

(2024)

Kungsholmsfort 56.1053 15.5894 Sweden RH2000 0 -
SMHI 

(2024)

➢ Six tide gauges stations selected: Narva, Ristna, Oulu,

Kungsholmsfort, Greifswald, Wladyslawowo

➢ Data between 1971 to 2022. All data are referred to BSCD 2000

indicating vertical reference compatability

➢ Relative Sea level utilized (Land uplift correction not applied)

➢ Gaps in TG data filled by using bilinear interpolation
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FEATURE SELECTION RESULTS

▪ Initial feature selection: wind speed (zonal, meridional and

gust), surface atmospheric pressure, evaporation, precipitation,

river runoff, Baltic Sea Index, significant wave height

▪ Mutual information (MI) index to discover the influential

parameters

▪ Uwind, Vwind, SWH, BSI and P were selected as the basic

features for all stations.

▪ Bayesian Information Criterion (BIC) index for each station

separately identified: the previous timesteps to consider

Impacts of different features on Sea level maxima using mutual index

Variable Units Source
Statistics

Min Mean Max

Zonal Wind 

speed
m/s Era5 -16.33 3.53 24

Meridional 

Wind speed
m/s Era5 -14.52 3.21 20.41

Wind gust m/s Era5 1.96 11.11 35.82

Surface 

atmospheric 

pressure

Mbar Era5 944.98 1008.2 1052.2

Significant 

wave height
m

SWAN 

and 

WAM

0 0.89 7.31

Evaporation 

minus 

Precipitation

m Era5 -0.00090 -0.000027 0.00019

Surface runoff m Era5 -4.34e-19 1.0196e-06 0.00082

Baltic Sea 

Index
- Era5 -1.6192 0.2302 2.6213

Sea level cm TGs -97.5 23.2914 213

stations Narva Ristna Oulu Kungsholmsfort
Wladyslawow

o
Greifswald

Selected 

features 

(MI)

u,v,p,swh,

wind gust
u,v,p,swh

u,v,p,swh,

wind gust, 

BSI

u,v,p,swh,

wind gust, BSI

u,v,p,swh, 

BSI

u,v,p,swh,

wind gust, 

BSI

Optimal 

lag (BIC)
5 3 5 5 5 5
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PROPOSED STRATEGY FOR SEA LEVEL MAXIMA 
FORECASTING
▪ Five ML/DL methods: Random Forest (RF), Extreme gradient boosting

(XGB), Multi-layer perceptron (MLP) neural network, CNN-LSTM

▪ Hyperpramater tuning (learning rate, number of layers, batch size, etc.):

Bayesian Optimization configured with 50 iterations

▪ Other: 'Adam' as the optimize; loss function as Mean Squared Error

(MSE)

Models 
Hyper-

parameters 
Definitions Ranges 

Optimized value 

Narva-

Jõesuu  
Ristna Oulu 

Kungshol

msfort 

Wladyslaw

owo 

Greifsw

ald 

MLP 

Number of 

hidden neurons 

Number of neurons in 

hidden layers, controls 

model complexity 

(10, 100) 24 100 10 16 19 10 

alpha 
Regularization term to 

prevent overfitting 
(0.01, 0.05) 0.0221 0.0458 0.016 0.01 0.0437 0.037 

learning_rate_i

nit 

Starting learning rate, 

controls how fast the 

model learns 

(0.01, 1) 0.01 0.01 0.01 0.01 0.01 0.01 

RF 

Number of 

Trees 

(n_estimators) 

Number of trees in the 

forest showing model 

complexity 

(50, 100, 

150, 200, 

300) 

300 150 300 100 300 300 

Tree Depth 

(max_depth) 

Maximum depth of each 

tree 
(3, 5, 7, 10) 10 7 10 10 10 10 

min_samples_s

plit 

Minimum samples 

required to split a node 

(2, 5, 10, 

20) 
20 2 2 2 5 2 

XGB 

Number of 

Trees 

(n_estimators) 

Number of boosting 

rounds (trees) 

(50, 100, 

150, 200, 

300) 

150 100 150 200 200 200 

Tree Depth 

(max_depth) 
Maximum depth of trees (3, 5, 7, 10) 7 3 5 5 3 3 

Learning rate 
Controls the size of each 

step during training 
(0.01, 1) 0.1485 0.179 0.06 0.129 0.0176 0.124 

CNN-

LSTM 

Number of 

filters 

Number of convolution 

filters, determines 

feature extraction 

(8, 128) 10 17 8 8 8 8 

activation 

function 

Function used to 

activate neurons (e.g., 

ReLU) 

['ReLU', 

'tanh', 

'Leaky 

ReLU] 

'tanh' 
'Leaky 

ReLU' 

'Leaky 

ReLU' 
' tanh' 'tanh' 'tanh' 

Dense units 

Number of neurons in 

the fully connected 

layer 

(16, 128) 124 125 16 58 107 16 

LSTM units 

Number of units in 

LSTM layer, controls 

memory capacity 

(16, 128) 16 89 16 16 16 16 

CNN- 

GRU 

Number of 

filters 

Number of convolution 

filters 
(8, 128) 8 126 8 8 53 8 

activation 

function 

Activation function for 

neurons 

['ReLU', 

'tanh', 

'Leaky 

ReLU] 

'Leaky 

ReLU' 

'Leaky 

ReLU' 
'tanh' 'tanh' 

'Leaky 

ReLU' 

'Leaky 

ReLU' 

Dense units 
Neurons in the fully 

connected layer 
(16, 128) 16 35 16 16 16 128 

GRU units 

Number of units in the 

GRU layer, controls 

memory 

(16, 128) 16 16 26 16 16 16 

 

training period: 1971-01-01 to 2007-05-27
validation period: 2007-05-28 to 2015-03-14
test period: 2015-03-15 to 2022-12-31
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RESULTS: MODEL PERFORMANCE

➢ Neural-network-based models MLP, CNN-GRU, and CNN-LSTM demonstrated better generalization capabilities

➢ RF and XGB models exhibited signs of overfitting: drop in R² scores; increase in RMSE from training to test
for XGB at Narva-Jõesuu, Oulu, and Kungsholmsfort, as well as for RF at Oulu and Wladyslawowo
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➢ MLP, CNN-GRU, and CNN-LSTM 

models performed reasonably well

➢ However, models underestimated the 

SLM peak values, specifically those 

exceeding 160 cm

RESULTS: 
INSTANTANEOUS

Previous studies: normal sea level

Se
a 

le
ve

l (
cm

) 

Test period (2019) 

Sea level forecast using ML/DL (LSTM/GRU) Baltic Sea
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RESULTS: STORM EVENT DETECTION

• During the analyzed storms, CNN-GRU model often showed better performance, especially

when dealing with sharp changes.

• Models mainly underestimated the peaks in storm Aapeli, especially for Greifswald with

peaks at 155 cm

▪ Storm events are recognized as a major contributor to

SLM

▪ Five major recent storm surge events in the Baltic Sea

2017–2020 are examined for their forecasting performance

using ML/DL

▪ Different storms peaked at different stations

➢ Xavier (October 4–6, 2017, 118.6 cm at

Wladyslawowo)

➢ Eleanor (January 2–4, 2018, 159 cm at Narva)

➢ Aapeli (January 1–2, 2019, 169 cm at Greifswald)

➢ Lorenzo (October 2–7, 2019, 107 cm at Narva)

➢ and Ciara (February 3–16, 2020, 161.30 cm at Oulu)
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LONG TERM FORECAST: RETURN PERIODS OF EXTREMES-GEV FIT

▪ To understand intensity and frequency of SLM for long term forecast

▪ Deeper insight into the SLM not adequately represented by ML/DL

GEV distribution with block maxima (Arns et al., 2013)

▪ Winter season tends to experience greater SLM

▪ Seasonal return periods shows that sea level maxima of 150 cm (underestimated by models) has a 5-year winter

return period in Narva and 7-year return period in Oulu stations (consistent with recent studies in the Baltic Sea,
(Wolski et al., 2025)

▪ This study’s 37 yr trained DL/ML models were not sufficient in capturing these extremes
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EXPLAINABILITY RESULTS: CNN-GRU MODEL

▪ The SLM the day before had the greatest influence on models predictions

▪ Other features like „pressure", "BSI", and wind components also appear frequently in the rankings, although their

significance varies depending on the location

▪ The Baltic Sea Index (BSI) lags are significant in mostly western locations, such as Kungsholmsfort, Greifswald and

Wladyslawowo

▪ Wind-related variables, such as "U Wind" and "V Wind", had greater impacts for stations like Oulu in Finland

▪ SWH was most influential at Ristna station

SHAP feature importance bar plot (Lundberg and Lee, 2017)

Western locations more affected by atmospheric forcing from the North Atlantic than the eastern stations, usually

more localized effects are frequent. Highest SLM found on the eastern section
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SUMMARY

▪ Overall for forecasting SLM:

- Deep Learning method CNN-GRU model demonstrated superior performance (accuracy of 7–14.9 cm)

- Other ML models like XGB and RF exhibited overfitting, (high training accuracy but lower test accuracy)

▪ Models capturing most of the peaks around 100–130 cm, although missing some exceptional peaks e.g. 150 cm

▪ Key differences in our approach that have led to this improvements in forecasting SLM include:

- using daily maximum values from a long historical dataset instead of hourly data,

- a more extensive feature set using a nonlinear mutual information (MI) method,

- utilization of Bayesian optimization that allows fine-tuning of hyperparameters for each station

▪ Models still unpredicted results during some storms (SLM > (130 to 150 cm). This could be due to trainind data set

too short or non-stationarity dynamics not catpured by models

▪ Winter season tends to experience frequent SLM. SLM > 150 cm tends to occur every 5 to 7 year at Narva and

Oulu stations

▪ Western locations more affected by conditions of North Atlantic, whilst eastern locations affected by localized

atmospheric conditions. Eastern locations experienced greater SLM

▪ A combination of methods allows a deeper understanding of SLM
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IMPROVING ON HYDRODYNAMIC MODELS
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SOURCES OF SEA LEVEL DATA: VERTICAL REFERENCE
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▪ 𝑬(𝜑_𝑇𝐺,𝜆_𝑇𝐺,𝑡)=〖𝐷𝑇〗_𝐻𝐷𝑀 (𝜑_𝑇𝐺,𝜆_𝑇𝐺,𝑡)−〖𝐷𝑇〗_𝑇𝐺 (𝜑_𝑇𝐺,𝜆_𝑇𝐺,𝑡)

VERTICAL REFERENCE DIFFERENCES: HDM VS TG
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METHOD FOR CORRECTING HDM BIAS (COASTAL TO OFFSHORE) 

Method I: use of geoid-referenced TG network
• Use a dense close-loop network of TGs with a common geoid-based reference datum (i.e., BSCD2000).
• Propagate HDM discrepancies from stations to offshore using a bilinear interpolation at each time instant. 

TG treatment (73 TG)
by adopting a common 
geoid-based ref. datum

Determine HDM 
time-domain bias 

at TG stations

Determine HDM 
spatial-domain bias 

using bilinear 
interpolations 

Corrected HDM 
by removing 
spatial bias 

Evaluation
Comparing corrected 

model with SA data, and 
comparing various 

interpolation techniques

Method II: use of deep learning (DL) model in a way that: 𝐸 𝜑, 𝜆, 𝑡 = 𝜀 𝜑, 𝜆, 𝑡 + 𝑅𝑒𝑓𝐵𝑖𝑎𝑠
where:
𝜺 is HDM modelling errors (can be predicted by a DL model)
𝑹𝒆𝒇𝑩𝒊𝒂𝒔 is the differences between HDM’s reference surface and a particular geoid model.

Train a DL model on 
modelling errors (𝜺)
using TG records and 

spatiotemporal variables

Remove HDM errors 
by predicted 

modelling error ( Ƹ𝜀)

Vertical Ref. Bias 
by comparing 

corrected HDM 
and SA data

𝑅𝑒𝑓𝑏𝑖𝑎𝑠 = 18.3±1.9 cm

Corrected HDM 
based on new 

realizations of the 
EVRS

Evaluation 
Comparative 
passement 

between data 
sources
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RESULTS: METHOD 2, DEEP LEARNING (WAVENET APPROACH)

𝐄 𝛗, 𝛌, 𝒕 = 𝛆 𝛗, 𝛌, 𝒕 + 𝐑𝐞𝐟𝐁𝐢𝐚𝐬

▪ The HDM error 𝜀 expected to consist of different 
components that are most likely to be predictable both in 
time and space. 

▪ RefBias is expected to be constant both in space and time
▪ DL model with temporal dilated causal convolution layers 

inspired by WaveNet (Oord et al., 2016)…(spectrum 
analysis)

▪ Causal convolution is unidirectional (1D), and the learnable 
parameters (i.e., weights and biases) are trained to predict 
the current moment using historical information

▪ 4.5 years examined
▪ Train: 16 TG stations (blue)
▪ Test: 18 TG stations (red)
▪ Validation : 16 stations (yellow)
▪ Evaluated: 52 stations
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METHOD II: DETERMINE RELEVANT INPUTS/VARIABLES

▪ A wrapper-type sequential feature elimination algorithm 
was utilized 

▪ The algorithm states training with a subset of variables and 
then removes a variable based on an elimination criterion. 
This criterion is a combination of the RMSEs from both the 
training and validation sets,

▪ DL model was generalized over the spatial dimension using 
input variables: ‘𝒎𝒔𝒅𝑫𝑻𝟐𝟒’, ‘𝜼𝒔’, ‘Uwind’, ‘Vwind’, ‘Diurnal 
tides’, ‘Low tides’, and ‘SLP’.

𝐸 𝜑, 𝜆, 𝑡 = 𝜀 𝜑, 𝜆, 𝑡 + 𝑅𝑒𝑓𝐵𝑖𝑎𝑠
Variable

unit

s

Sourced 

resolution
Data source

Tempor

al
Spatial

1 Zonal wind (Uwind) m/s Hourly 1 NM Sourced from Nemo-Nordic 

dataset
2 Meridional wind 

(Vwind)

m/s Hourly 1 NM

3 Sea surface 

temperature (SST)

°C Hourly 1 NM

4 Sea surface salinity 

(SSS)

psu Hourly 1 NM

5 Ice fraction (Ice-frac) % Hourly 1 NM

6 Zonal wind stress (𝑋𝑠) Pa Computed at the HDM grid points with an hourly 

temporal resolution using U and Vwind
7 Meridional wind stress 

(𝑌𝑠)

Pa

8 Ekman pumping (w-

Ekman)

m/s

9 Sea surface pressure 

(SLP)

Pa 3-

hourly

5.5 km Copernicus: 

https://doi.org/10.24381/cds.6

22a565a
10 Precipitation water 

col. (𝜂𝑝)

cm Hourly 0.25° MTPR was sourced from 

Copernicus: 

https://doi.org/10.24381/cds.a

dbb2d47
11 Significant wave 

height (SWH)

m Hourly 2 km Copernicus; 

https://doi.org/10.48670/moi-

00014
12 Semi-diurnal tide (M2) cm Computed at 

the HDM grid 

points with an 

hourly 

temporal 

resolution

Aviso: 

https://www.aviso.altimetry.fr/
13 Diurnal tides cm
14 Low tides cm
15 Steric height changes 

(𝜼𝒔)

cm Monthly profiles of S and T were 

sourced from SHARKweb: 

https://sharkweb.smhi.se/

16 Sea level variability 

(𝒎𝒔𝒅𝑫𝑻𝟐𝟒)

cm Computed

https://doi.org/10.24381/cds.622a565a
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.48670/moi-00014
https://www.aviso.altimetry.fr/
https://sharkweb.smhi.se/
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METHOD  

𝐸 𝜑, 𝜆, 𝑡 = 𝜀 𝜑, 𝜆, 𝑡 + 𝑅𝑒𝑓𝐵𝑖𝑎𝑠
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2017.0 – 2021.5 2017.0 – 2021.5

2017.0 – 2021.5 2017.0 – 2021.5

• RMSE of the Nemo-Nordic model relative to TGs 
improved from 7.6 cm to 3.4 cm.

• RMSE relative to satellite altimetry decreased from 
6.5 cm to 4.1 cm.

• Some problematic areas after correction a 
(remaining bias exceeding ±7 cm): eastern  Gulf of 
Finland, Bothnian Sea, and the Southwest of the 
Baltic Sea (Bornholm)

• Eastern  Gulf of Finland, Bothnian Sea (geoid 
problem); Bornholm Is (uncertain)

• High RMSE areas Gulf of Riga and the entrance of 
the Baltic Sea where seiches may be present and 
that the DL model was not able to replicate
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APPLICATION TO BARENTS SEA

▪ Ocean model shows that the 
simulated volume transport at the 
BSO increases for the period 1975–
2021. Thus bringing warmer waters 
into the Atlantic

▪ We attempted to reconstruct the 
temporal evolution of the BSO flow 
based on local time series of 
surface winds using a multivariate 
deep neural network. 

▪ By combining expert knowledge 
with trial and error, we find that in 
order to reconstruct the flow (a) all 
wind data backlogged as far as 21 
days and, occasionally, even as far 
back as 30 days is required and (b) 
daily resolution is insufficient, as it 
fails to capture the full amplitude of 
the trend in BSO flow
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SUMMARIZING

• Hydrodynamic Improvements

▪ A temporal-spatial bias exist in HDM that consists of a reference bias and 
modelling errors 

▪ Machine learning  using WaveNet approach can: (i) increase accuracy of 
Nemo Nordic; (ii)identify and quantify errors (reference bias and modelling 
errors)

▪ DL model identified seven main input variables: sea level pressure, diurnal 
and low tides, zonal and meridional wind, steric height, and sea level 
variability for predicting the modelling errors

▪ Machine Learning depends on input variables considered so often 
generalized approach utilized. So location dependent variables should also 
be considered e.g. ice conditions

▪ DL model is successful in estimating the low-frequency HDM errors, 
including annual and seasonal cycles. Further efforts are required for high-
frequency errors.

▪ Corrected HDM improved by a factor of 2, RMSE of the Nemo-Nordic model 
relative to TGs improved from 7.6 cm to 3.4 cm and 

▪ Satellite altimetry crucial for validation especially in offshore areas

▪ We applied similar approach to the Barent Sea Opening
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