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Chair of Space Geodesy @ ETH Zurich

• Established in April 2020

• Research focus: machine learning in geodesy

• GNSS, VLBI, satellite gravimetry
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GGOS Focus Area: AI for Geodesy

• Chair: Prof. Dr. Benedikt Soja (ETH Zurich, Switzerland)

• Vice-chair: Dr. Maria Kaselimi (NTUA, Greece)

• Objective: develop & evaluate improved geodetic
products based on AI and machine learning
− Higher accuracy and resolutions (spatial/temporal)
− Improved real-time and prediction quality
− Trustworthy & interpretable

• Four joint study groups
− 100+ Members
− 50+ institutions
− 10+ countries
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AI for Science has emerged as an overarching trend 

• Big tech companies (Google, NVIDIA, etc.) invest heavily in AI for Science, including:
− AI for medicine/health
− AI for chemistry/material science
− AI for Earth system modeling (climate, weather, etc.)

• The “magic ingredient” is typically the amount and quality of data
− Model choices are already very mature
− Computation not a limitation for such companies
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Focus on data is a great opportunity for geodesy!

• Huge increase in data volume from GNSS stations, InSAR, altimetry, etc. 

• Geodetic data of very high quality (“mm-level”)

• Auxiliary data: weather, climate, environmental models, etc. 
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Outline

• Introduction to machine learning

• Types of machine learning problems 

• Selected machine learning algorithms

• Machine learning strategies in geodetic applications
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Introduction to machine learning
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AI vs. machine learning

• Artificial intelligence (AI): any technique that enables machines to mimic human intelligence

• Examples: 
− machine learning
− evolutionary strategies
− rule-based chatbots
− …
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What is machine learning?

• Arthur Samuel (1959): giving computers the ability to learn without being explicitly programmed
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Example: weather prediction

• Classical approach to numerical weather prediction

01.09.2025 12

Weather today 
Physical knowledge

Classical 
programming Weather tomorrow 



Example: weather prediction

• Training a machine learning model using decades of weather data
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Example: weather prediction

• Training a machine learning model using decades of weather data

• Applying the machine learning model operationally

01.09.2025 14

Weather today 
Weather tomorrow 

Machine 
learning Weather prediction model

Weather today Weather tomorrowWeather prediction model



What is deep learning?

• Sub-category of machine learning making the computation of multi-layer neural networks feasible

• No clear separation, but some generally accepted characteristics

• Algorithms
− ML: shallow neural networks, decision trees, support vector machines, etc.
− DL: deep neural networks (3+ hidden layers)

• Data
− ML: manual feature extraction
− DL: “big” data, automatic feature extraction 

• Number of parameters
− ML: neural networks with 10s-100s of parameters
− DL: extreme case GPT-4 with 

1,000,000,000,000 (1 trillion) parameters 
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Types of machine learning problems
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Main machine learning categories

• Unsupervised learning 
− Methods that automatically detect patterns in data without using labels 
− Examples: principal component analysis, clustering, autoencoders, …

• Supervised learning
− Methods that automatically learn an input-output relationship based on example input-output pairs
− Examples: support vector machines, decision trees, random forests, neural networks, …

• And many more variants, e.g., reinforcement learning, self-supervision
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Unsupervised learning 

• Methods that automatically detect patterns in data without using labels 

• Examples: principal component analysis, clustering, autoencoders, …
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Principal Components Analysis

• Eigendecomposition of the covariance matrix

• Principle components maximizing the variance

• Dimensionality reduction
− Useful as a pro-processing step
− Often used before applying other machine learning algorithms

• Is it machine learning?
− Up to debate

• Unsupervised?
− Yes, no human input required (except when removing PCs)
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Clustering

• Automatically creating groups of data points with similar properties

• Most famous algorithm: k-means clustering
− Iterative optimization problem
− Method:

− find k clusters centers
− assign data points to nearest cluster
− minimize squared distances to the cluster center

• Other algorithms are based on probability distributions or density
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Clustering example
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• Clustering (Hierarchy, K-means, or Fuzzy C-means) to divide GNSS stations into 3 classes

• Clusters form the basis for a following classification task

Le, N., Männel, B., Bui, L.K. et al. Classifying continuous GNSS stations using integrated machine learning. GPS Solut 29, 44 
(2025). https://doi.org/10.1007/s10291-024-01797-2
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Autoencoders

• Goal: compress data into a lower-dimensional latent space and reconstruct it

• Structure:
− Encoder: maps input features → latent representation
− Decoder: maps latent representation → reconstructed features

• Training objective: minimize reconstruction error (e.g., MSE)

• Applications:
− Dimensionality reduction (non-linear PCA)
− Denoising data
− Anomaly detection
− Generating new samples
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Autoencoder example

• Learn both GNSS station position trajectory and realistic noise behavior for tectonic applications
 denoising of GNSS time series
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G. Mastella, J. Bedford, F. Corbi, F. 
Funiciello, et al., Denoising daily 
displacement GNSS time series using deep 
neural networks in a near real-time framing: 
a single-station method, Geophysical 
Journal International, 
https://doi.org/10.1093/gji/ggaf207

https://doi.org/10.1093/gji/ggaf207?utm_source=chatgpt.com
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Supervised machine learning

• Input data: features

• Output data: labels/target

• Measure of model performance: “loss”

• Estimation of model parameters with backpropagation

• Classification problems
− Predict a discrete label (class, category, …)

• Regression problems
− Predict a continuous label

01.09.2025 24

Features

sharpsightlabs.com

Target



Supervised machine learning

• Training:
− Initialize model
− Compute label predictions by propagating features through model
− Compare label predictions with actual labels  compute loss
− Update model to reduce loss
− Repeat

• Prediction:
− Compute label prediction based on unseen data
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Selected machine learning algorithms
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Decision tree principle

• Predict a value based on several input variables

• Starting with the root, then splitting off into several branches, finally reaching the leaves 

• Each node splits the data according to a certain criteria based on a single feature 

• Classification trees: leaves represent discrete classes

• Regression trees: high number of leaves  close to continuous 
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Properties of decision trees

Pros:

• No scaling needed 

• Interpretable (unlike most other machine learning algorithms)

Cons:

• Perform worse than other prediction algorithms

• Very sensitive to input data distribution

 random forests address some of the disadvantages
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Random forests

• Random forests consist of an ensemble of decision trees

• Individual trees are created randomly (bootstrapping)

• Final result: results from all trees are aggregated (bagging)

• Advantage: errors of individual trees are averaged out
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Bagging principle of random forests

• Trees are grown individually based on 
random data samples and features
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Boosting trees

• Trees are grown sequentially

• Adaptive boosting (AdaBoost)
− Increasingly higher weights are 

applied to samples more difficult 
to predict

• Gradient boosting (e.g., XGBoost)
− Additional trees are based on

residuals from previous trees
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Feedforward NNs

• Simplest form of NNs

• Information flows from input to output – no cycles 

• Minimum: input & output layers

• Optional: hidden layer(s)

• Each edge has a weight
− Unknown parameters of the NN

• At each node:
− Sum of the weighted inputs calculated
− Activation functions applied

• Bias nodes

• Examples: single-layer or multi-layer perceptrons, convolutional neural networks
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Activation functions

• Needs to be differentiable!

• Examples
− Linear function

− Sigmoid function (logistical function)

− Tangens hyperbolicus

− Rectified linear unit (ReLU)

− … and many more
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Backpropagation

• Algorithm to determine weights of a neural network

1. Inputs are propagated forward through the net

2. Predicted outputs are compared with actual outputs  computation of loss 

3. Error is propagated backward through the net
− Weights are adjusted based on their impact on the error
− Impact is determined by partial derivatives / gradients of loss functions w.r.t. weights
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Training a neural net with backpropagation  

• Determination of weights based on gradients while minimizing loss: optimization problem

• Commonly used methods:
− Gradient descent
− Levenberg-Marquardt

• Feedforward NN: efficient backpropagation with simple matrix multiplications

• General problem: global vs. local minima
− Potential solution: more sophisticated initialization of weights

• Problem with deep neural networks (high number of layers): vanishing/exploding gradients
− Potential solution for vanishing gradient: specific neural networks (e.g., LSTM)
− Potential solution for exploding gradient: activation functions that cannot “explode”, gradient clipping
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Feedforward NNs
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Recurrent neural networks
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Recurrent neural networks

• Input is typically a time series  input nodes correspond to temporal sequence

• RNNs can detect temporal patterns and compute predictions

• RNNs have loops and other additional connections compared to feedforward NNs
− Direct, indirect, lateral feedback

• Training: backpropagation through time (BPTT; generalized backprop algorithm) & gradient descent
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Long short-term memory (LSTM)

• Problem of RNNs: vanishing or exploding gradients 
when training multi-layer RNNs

• LSTMs solve the vanishing gradient problem

• Activations corresponds to short-term memory

• Weights correspond to long-term memory

• LSTMs typically based on cells with 3 gates:
• Input gate
• Output gate
• Forget gate
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Gated recurrent units (GRU)

• Similar to LSTM, but with fewer parameters

• Just 2 gates:
− Reset 
− Update

• GRU also address the vanishing gradient problem

• LSTMs are more powerful, but GRUs are easier to train 
− Often GRUs provide similar performance, but are much more efficient
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Comparison of RNN variants
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Time series prediction with RNNs

• Formulate as a regression problem
− Input: time series
− Output: shifted time series

• Sliding window approach
− Limiting data used for predictions

• General:
− Scaling: normalizing is necessary when using neural networks (activation functions tanh, sigmoid...)
− Subtraction of known signals recommended (trend, seasonal signals,…)
− Selection of hyperparameters (network topology) with validation dataset or cross-validation
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Machine learning strategies in geodetic applications
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Example: prediction of ionospheric parameters 

• Ionospheric corrections are needed for single-frequency positioning

• Predictions are needed in real-time scenarios to overcome latency 
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Example of ionospheric prediction as Jupyter Notebook
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Further toy examples of machine learning in geodesy
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Problem definition 

• Which type of problem? 
− Supervised, unsupervised, …
− Regression, classification, …

• Which data?
− Time series, images, …
− Discrete, continuous
− Gridded, irregular, sparse
− Quantity
− Quality
− Distribution of samples
− Metadata
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Guidance on algorithm selection

• Classical machine learning algorithms
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Guidance on algorithm selection

• Deep learning algorithms
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Perspectives for Machine Learning in Geodesy

• ML will probably have a place in all areas of geodesy – but not for all tasks!
− Parallels with neighboring fields, e.g. seismology or remote sensing

• Difficult to properly exploit the available geodetic data
− Efficiency of deep learning algorithms could become a necessity
− Accelerated by low-cost sensors and smallsats

• Domain knowledge will always be essential 
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• Technical problems: data selection & preprocessing, algorithm selection & tuning, training process, …
− Enhancing data science literacy in education 
− Recruiting data science expertise
− Setting up benchmarks/evaluation protocols 

(e.g., hackathons, EOP PCC)

• Lack of trust & interpretability (“black box”)
− Explainable learning

− Uncertainty quantification
− Feature importance

− Physics-based learning
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Conclusions

• Machine learning shows great promise in data-rich fields – including geodesy!

• Wide variety of ML problems and algorithms
− Select the right one for your application!
− Benefit from open-source ML libraries and examples

• Lots of new opportunities – experiment and have fun!
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Benedikt Soja
soja@ethz.ch

ETH Zurich
Chair of Space Geodesy
Institute of Geodesy and Photogrammetry
Zurich, Switzerland 
https://space.igp.ethz.ch

Thanks for your attention!
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