

Real-Time GNSS Data Integrity: Foundations, Challenges, and Emerging Approaches

NKG Summer school "From Struve to the Space" August 25-29 2025 Tartu, Estonia

Why GNSS Integrity Matters?

- GNSS dependent society
 - Used in aviation, farming, autonomous cars, drones etc
 - Real-time applications: high stakes, no room for undetected errors
 - Accuracy is no longer the main limitation
 - Accuracy alone is not enough We need to trust the solution

https://scpnt.stanford.edu/

- GNSS Integrity
 - Measure of trust in PNT provided by GNSS
 - Quantification of the confidence level of PNT given by the system is correct

US Federal Rdionavigation Plan defines integrity as:

A.1.11 Integrity

Integrity is the measure of the trust that can be placed in the correctness of the information supplied by a PNT system. Integrity includes the ability of the system to provide timely warnings to users when the system should not be used for navigation.

Position ≠ Safe unless integrity is assured

Accuracy:

Closeness of estimated position/velocity to the true value

Achieving Accuracy?

Depends on modeling and or precisely estimating sources of errors

- Space-related error
- Atmospheric errors
- Station/receiver errors

Continuity:

Pr{Integrity + Accuracy maintained over interval T}

Four dimensions that define the overall quality of GNSS for safety-critical applications.

Availability:

Pr{GNSS service meets accuracy, integrity, and continuity requirements when it is needed}

Availability:

Can I use the service when I want to start?

Continuity:

Once I start, will the service stay reliable until I finish?

• Integrity is the measure of trust and the ability to warn users when the data is unreliable for safe navigation.

Integrity = Trust + Timely Alerts

Alert Limit (AL)

Time to Alert (TTA)

Parameters

Integrity Risk (IR)

Protection Level(PL)

Alert Limit (AL)

The maximum position error that can be tolerated without compromising safety.

Examples:

- Aviation (LPV-200 approach):
 Horizontal AL = 40 m, Vertical AL = 35 m
- Automotive (SAE/ASIL-D, ISO 26262): 0.5 – 1.5 m for lane-keeping in highways

Time to Alert (TTA)

Maximum allowable time between a positioning failure and when the system alerts the user

Examples:

- Aviation (LPV-200): TTA = 6 s
- Automotive (lane-keeping):
 TTA = I-2 s

Integrity Risk (IR)

- The probability that the positioning system provides a solution that exceeds the Alert Limit (AL) without issuing an alert within TTA
- The the chance of Hazardously Misleading Information (HMI)

Examples:

- Aviation (LPV-200): IR ≤ 10⁻⁷ per approach
- Automotive (ASIL-D): IR ≈ 10⁻⁸ per hour

Protection Level (PL)

A statistically computed bound on the position error.

- AL is set for a given application
- PL is computed by the system
 PL > AL, PL < AL comparison makes a decision on alerts

GNSS Integrity Parameters - Protection Level (PL)

PL is a function of pseudorange error and satellite-user geometry

GNSS Error Sources

- Satellite Orbit and clock errors
- Troposphere & ionosphere residual errors
- Multipath residual error
- Receiver noise residual error

Model the User Equivalent
Range Error (UERE) as a
Gaussian random variable.
URE – Combined effect of all
residual errors

$$egin{aligned} \sigma_{ ext{UERE}}^2 &= \sigma_{ ext{orbit}}^2 + \sigma_{ ext{clock}}^2 + \sigma_{ ext{tropo}}^2 + \sigma_{ ext{iono}}^2 + \sigma_{ ext{multipath}}^2 + \sigma_{ ext{noise}}^2 \ \\ \sigma_{pos} &= \boxed{\sigma_{UERE}} imes GDOP \end{aligned}$$

Compute Position
Confidence (position error standard deviation)

Satellite geometry affects measurement errors.

Compute Geometric

Dilution of Precision

(GDOP)

$$GDOP = rac{\sqrt{\sigma_x^2 + \sigma_y^2 + \sigma_z^2 + \sigma_t^2}}{\sigma_{UERE}}$$

PL is a function of geometry, UERE, and target integrity risk (IR)

$$PL = k \cdot \sigma_{pos}$$

 \boldsymbol{k} is a scaling factor based on IR target.

PL is a protection bound: choose k so that $P(PE>PL) \le target IR$

GNSS Integrity Parameters – The Stanford integrity diagram

In use by SBAS

My Simplified version

The Stanford version

Use of the Stanford integrity diagram - EGNOS RIMS stations

RIMS station: Gävle, Sweden (GVLA)

Ionospheric Effects on GNSS integrity

Modernized SWEPOS Ionospheric Monitoring Service

https://swepos.lantmateriet.s e/services/ionomonitor.aspx

Integrity Systems

- Originated in aviation: defined and standardized integrity for safety-critical flight operations.
- Still emerging on the ground: ground-based GNSS lacks standardized and mature integrity measures.
- SBAS (Satellite-Based Augmentation Systems)
 - WAAS (USA)
 - EGNOS (Europe)
 - MSAS (Japan)
 - GAGAN (India)
 - SDCM (Russia)
- GBAS (Ground-Based Augmentation Systems)
- RAIM (Receiver Autonomous Integrity Monitoring) Receiver-based method for fault detection.

Satellite-Based Augmentation Systems (SBAS)

E.g., EGNOS Architecture: Delivering Integrity via SBAS

Ground-Based Augmentation System (GBAS)

https://www.nec.com/en/global/solutions/cns-atm/navigation/gbas.htm

Receiver Autonomous Integrity Monitoring (RAIM)

Difference between observed and predicted pesduoranges

Test statistics compares residuals to threshold (e.g. pfa = 1/15000 in aviation)

Protection level: HPL/VPL bounds position error

RAIM variants

RAIM type	Measurement	FDE / Tolerated faults	External input	Navigation Constellations	Frequencies
Classical RAIM	Code	FDE / Single fault Solution separation (SS)	No Integrity data from Integrity Support Messages	LNAV	GPS 1
Advanced RAIM	Code	Real time FDE / Multiple faults	LPV-200	Multiple	Multiple
Relative RAIM	Carrier	FDE / Multiple faults SS method	External monitors	LPV-200	GPS -
Extended RAIM	Code	FDE / Multiple faults	Multiple sensors	Multiple	
Carrier based RAIM	Carrier	FD (no exclusion) / Multiple faults	No	LNAV	Multiple Multiple
Time RAIM	Code and doppler	Forward backward FDE /	No	Multiple	-
Vision-Aided RAIM	Code	Fault detection / single fault assumption in [58] but multiple faults could be detected	Vision system provided landmarks RTK required corrections	LPV-200	GPS -

Based on Zabalegui et al., 2020

Integrity is Easy in the Sky... Hard on the Street

High Precision GNSS & Integrity

High Precision GNSS & Integrity

Monitoring Network RTK Integrity

As NRTK adoption grows for autonomous navigation and other mass market applications, **integrity** is key to meeting standards like ASIL D (IR $\approx 10^{-8}$)

NRTK (E.g., Trimble Pivot Platform (TPP))

- Manages CORS and generates VRS corrections
- Includes integrity monitoring to ensure reliability of the corrections
 - ARAIM/RAIM Integration (receivers)
 - Alloy RAIM, MAXWELL, IonoGaurd
 - Septentrio PolarX5 RAIM+, AIM+, IONO+,APME+
 - Trimble Integrity Manager App
 - Trimble Rover Integrity App
 - VRS3Net App
 - Pivot RTX App

- Doesn't broadcast integrity messages via Ntrip and RTCM containing
 - Parameters to compute Protection level (PL)
 - User Differential Range Error (UDRE)
 - Grid Ionospheric Vertical Error (GIVE)
 - Fault flag or risk indicator

Challenges of Providing Integrity Messages in Today's NRTK Services

Standardization Gaps

- No unfied messages for integrity as in SBAS
- RTCM needs to be extended for VRS-specific PL/AL/UDRE messaging

Error Propagation

 Network errors (e.g., atmospheric biases in VRS) must be bounded in messages in broadcastable formats.

Latency & communication Issues

- bandwidth vs. detailed integrity info
- Sending SBAS-like messages over NTRIP adds delay, which may exceed time-to-alert requirements

Scalability

 For mass adoption (e.g., autonomous vehicles), certifying NRTK messages to ICAO/RTCA standards can be challenging.

Network Dependency

- Dependency on ground networks which are vulnerable to outages
- Detecting and removing a faulty station in a large network is challenging

Multi-GNSS / Multi-Frequency Complexity

 Generering SBAS like PL for multi-GNSS is complex, due to differing error models, for example.

Challenges of Providing Integrity Messages in Today's NRTK Services

User Equipment Limitations

 Many rovers can not use PL-AL-type messages today – would require firmare upgrades

Security & Spoofing Risks

 Integrity messages could also be spoofed unless authenticated

Proprietary data stream bypasses the RTCM limit

But then interoperability is limited to systems that understand a specific system's API

E.g., Swift Navigations SBAS-style integrity messages

- Integrity parameters between Starling positioning engine (rover) and Skylark (PPP-RTK) correction service.
- Protection Limit (PL) is computed by Starling
- Alert Limit (AL) and Time-to-Alert (TTA) are set at the application/system level.
- Starling outputs **position + PL + integrity status**
- The application compares PL against AL

PL > AL
Unsafe operation

Commercial PPP-RTK/NRTK services that send integrity messages (Outside of SBAS)

Provider / System	PL/AL Broadcast	
Swift Navigation – Skylark	Yes – HPL/VPL + integrity flags	Proprietary SBP/RTCM; ASIL-D automotive & rail focus
Hexagon / NovAtel – TerraStar X / Apollo	Yes – for OEM safety-critical configs	Proprietary; NDA with OEMs
Sapcorda – SAPA Premium (pre- u-blox)	Yes – in premium service	Proprietary format; safety-critical GNSS corrections
Fugro – Starfix / Marinestar	Yes – maritime dynamic positioning	Proprietary Format
Trimble RTX Integrity (Automotive mode)	Yes – in automotive safety-certified mode	ISO 26262 certified; proprietary closed protocol
Trimble RTX (Standard)	No − PL computed internally in receiver	Commercial RTX service; no explicit PL output
u-blox PointPerfect	No – metadata only, receiver computes PL	SPARTN format includes variances but no PL

Proprietary Format - Limited Interoperability, Vendor lock-in, costly, Slower Industry Standardization

There is an RTCM committee working on integrity messages for both NRTK and PPP-RTK

Development of RTCM SC-134 Messages for High-Integrity Precise Positioning

- Work in progress to include integrity messages for both NRTK and PPP-RTK in RTCM
 - RTCM established a committee (SC-134) in 2018 to create integrity standards for high-accuracy GNSS applications
 - Unlike SBAS or GBAS, the SC-134 standard must cover a wide range of applications, augmentation technologies, and both current and future GNSS systems
 - The standard is designed to be multimodal, multiservice, and technology-agnostic.
 - It provides a generalized definition of Protection Level, so integrity parameters can be used across different monitoring methods (SBAS, GBAS, ARAIM, etc.).
 - $IR \equiv P(|X|Position|Error| > XPL, No|Alert)$
 - Data fields and messages are being defined to support different user needs, augmentation systems, and monitoring approaches.
 - First release of the SC-134 standard is expected in 2025

Would lead proprietary solutions to converge into common, standardized framework for integrity messaging

Emerging Integrity Threats

- Increased jamming and spoofing events globally
 - International interference is increasing
 - Spoofing 500% increase in 2024
 - Some systems do not easily recover
 - Some erroneously report recovery

- RTK and PPP are vulnerable to both time and signal spoofing. Their trust model assumes
 - All satellite signals are genuine
 - Corrections are valid

Integrity Enhancement Techniques

Takeaways!

- No integrity = no trust
 - Detect errors and warn users in time
- Aviation sucess story
 - Mature frameworks (SBAS,ARAIM, PL/AL) proven in safety-critical operations.
- - Multipath, low redundancy, and complex environments make integrity harder.
- Why it matters now?
 - Rise in GNSS threats: jamming, spoofing, interference.
 - Growing demand from autonomous cars, rail, maritime, drones, etc.
- What we need to do?
 - Develop standardized integrity messages (for RTK/PPP-NRTK).
 - Advance network integrity monitoring for real-time detection.
 - Encourage open research & student projects to develop integrity tools

THANKS! WE ARE AVAILABLE AT...

WEBSITE <u>www.lantmateriet.se</u>

CONTACT www.lantmateriet.se/kontakt

PHONE 0771-63 63 63

LINKEDIN <u>www.linkedin.com/company/lantmateriet</u>

FACEBOOK www.facebook.com/lantmateriet

INSTAGRAM <u>www.instagram.com/lantmateriet</u>

