

SYstèmes de Référence Temps-Espace

Quantum Sensors: Principles and ground applications

F. Pereira Dos Santos LNE-SYRTE, Paris Observatory

NKG Science Week Online, March 12th, 2024

- 1. Applications of inertial sensors / accelerometry
- 2. Principle of atom interferometry
- 3. Gravimeters: state of the art quantum accelerometers
- 4. Cold Atom Interferometer Gravity Gradiometer
- 5. Other sensors and applications

- 1. Applications of inertial sensors / accelerometry
- 2. Principle of atom interferometry
- 3. Gravimeters: state of the art quantum accelerometers
- 4. Cold Atom Interferometer Gravity Gradiometer
- 5. Other sensors and applications

Applications of inertial sensors

Inertial sensor = instrument which measures accelerations and rotations of an object

Inertial navigation

- Onboard accelerometers and gyrometers
- \rightarrow planes, satellites, submarines, ...

Applications of inertial sensors

Geophysics

- Study of the underground (oil, gas ...)
- Airborne gravimetry
- \rightarrow uncertainty ~ 1 µg
- Determination of the geoid

Applications of inertial sensors

Geophysics

- Study of the underground (oil, gas ...)
- Airborne gravimetry
- \rightarrow uncertainty ~ 1 µg
- Determination of the geoid

ESA/GOCE, 2011 sensibilité: 10⁻¹² m.s⁻²

Fundamental physics

- test of the equivalence principle
- detection of gravitational waves
- measurement of G and $\boldsymbol{\alpha}$
- metrology (Kibble balance)

Required sensitivity: ~ $10^{-15} m.s^{-2} at f_{GW}$ (~ 1 Hz for example)

1. Following the motion of an object which is linked to the accelerated frame

- Piezoelectric accelerometers
- MEMS accelerometers
- Superconducting gravimeters, electrostatic accelerometers

(the proof mass is maintained fixed in position)

Accelerometry

Quantum Accelerometry

Use cold atoms in free fall to read the phase of the laser linked to the accelerated frame \rightarrow measurement of the distance in units of the wavelength

Orders of magnitude

- Ruler is a laser with scale division given by $\lambda_{laser} \sim 0.5 \ \mu m$

- Smallest measurable : $\lambda_{\text{laser}} / 1000$ (SNR = 1000)

- 1. Applications of inertial sensors / accelerometry
- 2. Principle of atom interferometry
- 3. Gravimeters: state of the art quantum accelerometers
- 4. Cold Atom Interferometer Gravity Gradiometer
- 5. Other sensors and applications

Principle of atom interferometry

- Analogy with optical interferometry
- Use atom-laser interaction to deflect matter waves

Interferometer based on a sequence of 3 laser pulses

Phase difference between the two paths

Phase of the interferometer : $\Delta \Phi = \Phi^{up} - \Phi^{down}$

 Φ : phase of the quantum wavepacket

$$egin{array}{ll} \Phi^{\mathsf{up}} &= arphi(0) - arphi(T) + arphi(2T) \ \Phi^{\mathsf{down}} &= 0 + arphi(T) + 0 \end{array}$$

$$\varphi$$
: laser phase : $\varphi(T) = kz(T) = \frac{4\pi}{\lambda}z(T) = 4\pi \frac{z(T)}{\lambda}$

 $\Delta\Phi=\varphi(0)-2\varphi(T)+\varphi(2T)=k(z(0)-2z(T)+z(2T))$

Sampling of the positions at the three pulses

For a constant acceleration a,
$$z(t) = \frac{1}{2}a t^2 \implies \Delta \Phi = k a T^2$$

Key advantages scale factor scales as $T^2 \Rightarrow$ Benefit of cold atoms depends on time (T) and frequency (k) \Rightarrow SI traceable, accurate, bias free

Phase difference between the two paths

Measurement of the phase difference

Typical experimental sequence

- 1. Applications of inertial sensors / accelerometry
- 2. Principle of atom interferometry
- 3. Gravimeters: state of the art quantum accelerometers
- 4. Cold Atom Interferometer Gravity Gradiometer
- 5. Other sensors and applications

Gravimeter: a vertical accelerometer

SYRTE

Interferometer measurement = measure of the relative displacement atoms/mirror

An example : the SYRTE gravimeter

An example : the SYRTE gravimeter

20

Sensitivity limits: vibrations

Typical noise in urban environnement

Without isolation platform: $2.9 \cdot 10^{-6} \text{ g/Hz}^{1/2}$

Number of shots

With platform: $7.6 \cdot 10^{-8} \text{ g/Hz}^{1/2}$

GAIN : factor 40

Provides additional gain from 2 to 10 depending on vibration noise conditions: $6 \ 10^{-9} \ g/Hz^{1/2}$ (quiet, LUX) – 15 $10^{-9} \ g/Hz^{1/2}$ (urban, WB lab, Trappes)

Sensitivity

Comparison with a corner cube gravimeter

FG5X#216 (3 s cycle time) CAG (10 times faster measurement rate)

Unit of reference (used in geoscience): $1 \mu Gal = 10^{-8} \text{ ms}^{-2} \approx 10^{-9} \text{ g}$

CAG : Better immunity vs earthquakes

Better sensitivity than « conventional » instruments : $5.7\mu Gal@1s$

Drag-Free ____ Dropping Chamber

Mach-Zender

Interferometer

Avalanche Photo Diode

Systèmes de l

Continuous measurements

25 days of (almost) continuous measurement Concurrent operation of two intruments : CAG and iGrav

Data averaged over 400 CAG shots = 176 s

Averaged over 1h

Residuals 2 µGal ptp

1 μ Gal= 10⁻⁸ ms⁻² ~ 10⁻⁹ g

Continuous measurements

Record long term stability by the GAIN, HU Berlin

Best stability: 0.5 nm/s² - 0.05 µGal

Accuracy

Systèmes de Référence Temps-Espace

Effect	Bias	u
	$\mu { m Gal}$	$\mu { m Gal}$
Alignments	2.4	0.5
Frequency reference	-4.6	< 0.1
RF phase shift	0.0	< 0.1
vgg	-10.3	< 0.1
Self gravity effect	-1.3	0.1
Coriolis	1.3	0.8
Wavefront aberrations	0.0	4.0
LS1	0.0	< 0.1
Zeeman	0.0	< 0.1
LS2	-7.7	0.5
Detection offset	0.0	0.5
Optical power	0.0	1.0
Cloud indice	0.4	< 0.1
Cold collisions	< 0.1	< 0.1
TOTAL	-19.8	4.3

Accuracy

Effect	Bias	u
	$\mu { m Gal}$	$\mu { m Gal}$
Alignments	0.3	0.5
Frequency reference	0.5	< 0.1
RF phase shift	0.0	< 0.1
vgg	-13.4	< 0.1
Self gravity effect	-2.1	0.1
Coriolis	-5.3	0.8
Wavefront aberrations	-5.6	1.3
LS1	0.0	< 0.1
Zeeman	0.0	< 0.1
LS2	-3.6	0.8
Detection offset	0.0	0.5
Optical power	0.0	0.5
Cloud indice	0.4	< 0.1
Cold collisions	< 0.1	< 0.1
CPT	0.0	< 0.1
Raman α LS	0.3	< 0.1
Finite Speed of Light	0.0	<01
TOTAL	-28.5	(2.0)

Evaporative cooling in a dipole trap Temperature range: [50 nK -7 µK] ∆g (µGal) 2 0 -2 -4 0,1 10 1 Atom temperature (µK)

Transport out of the laboratory

International comparisons

CCM.G-K3

Third key comparison in 2017 in China

Since then, a new key comparison in 2023

6 atom gravimeters out of 30 instruments in total (4 have contributed) All from chinese groups !

Atom gravimeters anticipated to be reference standards in the future

Quantum gravimeters (on the ground)

Systèmes de Référence Temps-Espace

State of the art quantum (vertical) accelerometers = quantum gravimeters

	LNE SYRTE	WUHAN	HUB	eXail (ex Muquans)
2T (ms)	160	600	600	120
Sensitivity (/Hz ^{1/2})	5.7 10 ⁻⁹ g	4.2 10 ⁻⁹ g (2 10 ⁻⁹ g)	10 10 ⁻⁹ g	50 10 ⁻⁹ g
Long term stability	< 10 ⁻¹⁰ g	5 10 ⁻¹⁰ g	5 10 ⁻¹¹ g	10 ⁻⁹ g
Accuracy	2 10 ⁻⁹ g	3 10 ⁻⁹ g	3 10 ⁻⁹ g	A few 10 ⁻⁹ g

Differences in T (and thus in the scale factor) do not necessarily correlate with the performances

Deployment on the field by INGV

eXail AQG = compact gravimeter for in lab and on-field operation

Specifications & Characteristics

Sensitivity:	50 µGal/√Hz at a quiet place
Measurement frequency:	2 Hz
Long-term stability:	< 1 µGal
Accuracy:	under evaluation
Dimensions :	Sensor head: h = 70 cm / D = 38 cm
Laser & electronics:	100 x 50 x 70 cm ³
Mass Sensor head:	25 kg, control unit : 75 kg
Power consumption:	250 W typical

Mt. Etna's continuous gravity network

Deployment on the field by INGV

Recording of high-quality time series, allowing to track volcano related gravity changes

Combined analysis of gravity changes and deformation field by GNSS allows obtaining insight on the dynamics

Deployment on the field by GFZ & BKG

Gravimetric field survey with an Absolute Quantum Gravimeter

Instrument: Muquans AQG#B02

564 m amsl, gravity difference to Wettzell **Δg**_w= +5.13 mGal

807 m amsl, Δg.,= -48.03 mGal

Sites: 4 field sites (forest/grassland), 1 observatory site Wettzell, PS2, PS4 VIECHTACH

Study area: Gravimetric footprint network of the Geodetic Observatory Wettzell, Germany

Deployment on the field by GFZ & BKG

AQG field survey results - Sensitivity and precision

A total of 15 measurements have been performed at the different sites within a 4-day survey period, with a duration of at least about 60 minutes for each measurement.

Statistics of absolute gravity g after 60 min (as mean of all 15 measurements):

- Standard deviation of raw data (individual drops of about 2 Hz): 273 nm/s²
- Standard error of mean: 11 nm/s²
- Slight dependence of precision on wind speed (turbulence causes movements of truck with AQG laser unit and of laser fibres), see example for MUN

On board measurements

Development of a compact gravimeter for marine gravimetry by ONERA Measurement campaigns on the Beautemps-Beaupré (French Navy)

KSS32 relative Marine Gravimeter Cold Atom Gravimeter (Bodenseewerk) (Onera)

Better performance for gravity mapping with the absolute atom gravimeter Suppression of calibration errors and drift corrections

→ Gain of a factor 2-3 on the uncertainty (mGal level)

+ Plane campaign

- 1. Applications of inertial sensors / accelerometry
- 2. Principle of atom interferometry
- 3. Gravimeters: state of the art quantum accelerometers
- 4. Cold Atom Interferometer Gravity Gradiometer
- 5. Other sensors and applications

CAI Gravity Gradiometer

- Simultaneous interferometers on two cold atom clouds with common Raman lasers
- Differential measurement allows for extracting the acceleration difference and thus the Earth gravity gradient
- Suppression of common mode noise, and in particular of the vibration noise
- Adapted for onboard measurements

Gravity gradiometers

Comparisons of gravity maps realized with 1) ground-based gravimeters 2) airborne gravimeters 3) airborne gradiometers

CAI Gravity Gradiometer

Systèmes de Référence Temps-Espace

Yale/Stanford, around 2000

Demonstrated differential acceleration sensitivity:

4x10⁻⁹ g/Hz^{1/2}

(2.8x10⁻⁹ g/Hz^{1/2} per accelerometer)

Gradient sensitivity: ~ $30 \text{ E/Hz}^{1/2}$

Measurement of G

Stanford (M. Kasevich)

Differential acceleration sensitivity demonstrated: 10⁻¹¹ g

Statistical uncertainty: 2 10⁻⁴ on G

Florence (G. Tino)

Combined uncertainty: 1.5 10⁻⁴ on G

More recent achievements

Second generation instrument currently under development

European project FIQUgS

eXail gradiometer Sensitivity : 50 E @ 1 s Long term stability : 0.1 E

25

20

15

10

0

-5

-2

 $^{-1}$

0

Mass position (m)

Camille Janvier et al.

Phys. Rev. A 105, 022801 (2022)

2

Γ_{zz} (Ε)

(b)

[0, 0] 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 3 cale 10 0.5 0 1.0 m

Ben Stray et al., Nature 602, 590–594 (2022)

A wealth of activities (academic +industry)

- 1. Applications of inertial sensors / accelerometry
- 2. Principle of atom interferometry
- 3. Gravimeters: state of the art quantum accelerometers
- 4. Cold Atom Interferometer Gravity Gradiometer
- 5. Other sensors and applications

Most « natural » field of application

But there are difficulties

- ✓ Conventional sensors have (very) high level of performances
- ✓ Constraints due to the harsh environment
- ✓ Size, Weight, Power budget is demanding
- ✓ Incompatible with dead times

One possible solution to overcome dead times: Hybridization

Inertial navigation

S. Templier et al, **Tracking the vector acceleration with a hybrid quantum accelerometer triad** Science Advances Vol 8, Issue 45 (2022)

Laboratoire commun iXAtom (LP2N-iXblue)

Demonstration of the first quantum accelerometer triad (QuAT) Measures accelerations along three mutually orthogonal directions

> Long-term stability of 60 ng High data rate (1 kHz) absolute magnitude accuracy below 10 µg pointing accuracy of 4 µrad

Cold atom gyroscope

- Based on a 4-pulse sequence
- No DC acceleration sensitivity
- Pure gyroscope

Main results

• Zero dead time operation

• Stability : 0.2 nrad/s (state of the art atomic gyro)

Chronometric geodesy

Principle

- Compare distant clocks to determine differences in the gravitational potential
- Sensitivity : 10⁻¹⁸ ⇔ 1 cm

$$\frac{\nu_2}{\nu_1} = \left(1 - \frac{U_2 - U_1}{c^2}\right)$$

□ Specificity

- Direct measure of the potential
- Local measurement
- Sensitivity to mass sources in 1/r

D Towards applications in earth sciences

- First demontrations realized
- Objective: allow to reach the 10⁻¹⁸ level anywhere
 - Transportable clocks
 - Develop fiber and free space links

$$\frac{U_2 - U_1}{c^2} \bigg)$$

Remote comparison of two Sr optical clocks

PTB Transportable Clock

Fiber links

Example of the Paris (SYRTE) – Braunschweig (PTB) fiber link

- In 1s, the link compares as well as satellite methods in a day
- Allows to compare to better than 10⁻¹⁸ over continental distances

Construction of an european network for clock comparisons and the dissemination of stable time and frequency references

• Maturity of atom interferometry techniques for the development of inertial sensors

- Performances compare, or overpass, classical technologies
- Industrial transfer realized and commercial products available
- Current efforts towards reduced SWAP and improved on the field operability
- Clear perspectives for improvements (LMT, squeezing ...)
- A variety of fields of applications: fundamental physics, geosciences, reservoir monitoring, exploration, civil engineering, navigation ...

Increasing the interaction time

Increasing T increases

- the intrinsic sensitivity (the scale factor)
- the size of the experimental set up

A few ongoing projects of 10 m tall chambers

Release Vs Launched (fountain geometry)

т	H, release	H, fountain
10 ms	0.5 cm	0.1 cm
80 ms	12.5 cm	3 cm
300 ms	1.8 m	45 cm
1 s	20 m	5 m
1.4 s	40 m	10 m

Stanford

Wuhan

Hannover

Test of the WEP

Comparing gravity acceleration experienced by 85Rb and 87Rb

Asenbaum et al, PL 125, 191101 (2020)

Total interferometer duration 2T = 1910 ms Eotvos parameter $\eta = \frac{\Delta a}{g} = (1.6 \pm 1.8(\text{stat}) \pm 3.4(\text{syst})) \times 10^{-12}$

Active vibration isolation

=> Similar Transmissibilities, but less (ground) noise in Wuhan

Large momentum transfer beamsplitters

Bragg diffraction in optical lattices

500 μm		$16 \hbar k$
		$24 \hbar k$
۰		$48 \hbar k$
0		$88 \hbar k$
State-osterer 1	anternanta francia en contra contra de la 🖉	$128 \hbar k$
	0	$168 \hbar k$
		$208 \hbar k$

Courtesy: S. Abend, LUH

Pioneering work in the group of H. Müller

Application:

Measurement of the fine structure constant with 2 10⁻¹⁰ relative uncertainty *Parker et al., Science 360, 191–195 (2018)* Allows momentum separations from $2\hbar k$ to $2N\hbar k$, with $N \sim 100s$ if not 1000s

Gravity gradiometer at SYRTE

Ideal test bed for the development of new methods

Expected sensitivity: $10^{-10} \text{ s}^{-2} = 0.1 \text{ E}$ at 1s

More than one order of magnitude better than state of the art sensors based on differential accelerometry

Gravity gradiometer

Gravity gradiometer

Parametric plot of transition probabilities top/bottom clouds = ellipse

2*ħk* Bragg transitions

2T = 260 ms

Current sensitivity: 210 E/shot

 $1 \text{ E} = 10^{-9} \text{ s}^{-2}$

Best (Raman) gradiometer 28 E@1s

Bragg gradiometer (20ħk) Asembaum et al, PRL 118, 183602 (2017) 14 E@1s But ultracold atoms @ 50nK

> Bragg gradiometer (6ħk) with laser-cooled atoms D'Amico et al, 2014 1160 E@1s

To be improved by

- Increasing the number of atoms \rightarrow more laser cooling power
- Improving the contrast \rightarrow Lower temperature
- Increasing 2T up to 500 ms
- Operating at mid-fringe \rightarrow reduce vibration noise
- Increasing the separation to $N\hbar k \rightarrow$ more Bragg power

Stimulated Raman transitions

Phase difference between the lasers gets imprinted $\varphi = \phi_1 - \phi_2 = \vec{k}_{eff} \cdot \vec{r}(t)$ $+\varphi \mid |e, p + \hbar \vec{k}_{eff}\rangle - \varphi \mid |f, \vec{p}\rangle$

Rabi oscillations

1

1/2

Pulse duration

 \mathbf{k}_1, ω_1

Principle of measurement

• Free fall \rightarrow Doppler shift of the resonance condition of the Raman transition $\omega_1 - \omega_2 = \omega_e - \omega_f + \vec{k}_{eff} \vec{v}(t) + \frac{\hbar k_{eff}^2}{2m}$

• Ramping of the frequency difference to stay on resonance : $\omega = \omega_0 + \alpha t$

Principle of measurement

• Free fall \rightarrow Doppler shift of the resonance condition of the Raman transition $\omega_1 - \omega_2 = \omega_e - \omega_f + \vec{k}_{eff} \vec{v}(t) + \frac{\hbar k_{eff}^2}{2m}$

• Ramping of the frequency difference to stay on resonance : $\omega = \omega_0 + \alpha t$

The g measurement is a frequency measurement