SENSING THE PULSE OF THE EARTH WITH QUANTUM TECHNOLOGY

Prof. Dr. Matthias Weigelt

What is the pulse of the Earth?

Ocean circulation

Carbon cycle

Nutrient cycle

Rock cycle

Gravimetry is a universal tool to sense the pulse of the Earth

Water cycle

Continental water balance

$$\Delta S = P - ET - Q$$

- P: Precipitation
- ET: Evapo(trans)piration
- Q: Runoff
- ΔS : Storage change

The carbon cycle in sight ...

Wetlands are the largest natural Methan (CH4) source

Project:

Wechselwirkung zwischen Kohlenstoff- und Wasserkreislauf

CH4 is produced during anaerobic decomposition (Methanogenesis)

Observing gravity is observing climate change

INSTITUTE FOR SATELLITE GEODESY AND INERTIAL SENSING

Deutsches Zentrum für Luft und Raumfahrt (DLR e.V.) Institut für Satellitengeodäsie und Inertialsensorik (DLR-SI) Callinstrasse 30b, 30167 Hannover

Our mission

DLR-SI in numbers

- Locations
 - Hannover
 - Bremen

Human Resources

 Scientific Personal 	40
■ HiWi	4
 Master/Bachelor 	3
 Administrative MA 	6

Close co-location to the Universities

Utilizing the fundamental properties of atoms and molecules to improve measurement accuracy and resolution

Laser interferometry

- Long-term stability, high-precision distance measurements
- High-precision measurement of the smallest angles

Atom interferometry

- Absolute, drift-free, highly accuarte
- Accelerometer
- Rotation sensor

Optical clocks

- absolute, drift-free, highly accurate
- navigation
- reference system for height profiles

Digital Twin: orbit propagation considering all disturbing forces (environment, space weather, satellite), simulation of sensors, systems engineering tools

Geodetic Modelling Preparation of gravity field data for the public and data analysis tools

OPTICAL FREQUENCY METROLOGY

Quantum Sensors

- Isolating atoms from a noisy environment
- Controlling atoms on the quantum level
 (→ wave properties)
- Using atoms for ultra-precise interferometer
 - Accelerometry
 - Rotational Sensors
 - Gravimetry/Gradiometry
 - Time- and Frequency

Improving the precision of clocks

Optical lattice clock

Networks of Clocks: Objectives

- relativistic frequency change: $\frac{\Delta f}{f} = \frac{W_0 W_P}{c^2}$
- gravity potential W: Newtonian + centrifugal terms

• height:
$$H_P = \frac{W_0 - W_P}{\bar{g}} = \frac{c^2}{\bar{g}} \frac{\Delta f}{f}$$

- Chronometric levelling over long distances
- ➔ Clock-based height system

Vermeer, Reports of the Finnish Geodetic Institute 83(2), 1(1983); Bjerhammar, Bull. Geodesique 59, 207 (1985).

ATOM INTERFEROMETRY

Atom interferometry

Atoms in free fall, Mach-Zehnder like $\pi/2 - \pi - \pi/2$ pulse geometry:

Interferometer phase, ϕ_i imprinted at pulse i: Acceleration \vec{a} , effective wave vector \vec{k} : Forward drift velocity \vec{v} , rotation $\vec{\Omega}$, enclosed area \vec{A} :

$$\phi_{tot} = \phi_1 - 2\phi_2 + \phi_3$$

$$\phi_{acc} = \vec{k} \cdot \vec{a} T^2$$

$$\phi_{rot} = 2(\vec{k} \times \vec{v}) \cdot \vec{\Omega} T^2 \sim \vec{A} \cdot \vec{\Omega}$$

Gravity gradiometer

Combination of two Mach-Zehnder like atom interferometers, simultaneous interrogation with the same light field \rightarrow extraction of mean gravity gradient between the two interferometers from the differential signal

[McGuirk et al., PRA 65, 033608 (2002); Fixler et al., Science 315, 74 (2007); Biedermann et al., PRA 91, 033629 (2015); Chiow et al., PRA 93, PRA 93, 013602 (2016); Rosi et al., Nature 510, 518 (2014); Asenbaum et al. PRL 118, 183602 (2017)]

State of the art in Al-based quantum sensors

Rotation sensors

Stability:

- 30 nrad/s in 1s
- 0.1 nrad/s after averaging

Uncertainty:

• Few nrad/s to 10 nrad/s

Gravimeters

Stability:

- 42 nm/s² in 1s
- 0.5 nm/s² after averaging

Systematic uncertainty:

- 40 nm/s²
- Limited by wave front distortions ¹⁾

Transportable, sea, flight, commercial versions

Gravity gradiometers

Stability:

• 3.10⁻⁸ 1/s² in 1s

Systematic uncertainty

• 8.10⁻⁸ 1/s²

Determination of gravitational constant

[From: Chen et al., arXiv:2303.00239; Gautier et al., Sci. Adv. 8, eabn8009 (2022); Berg at al., PRL 114, 063002 (2015); Stockton et al., PRL 107, 133001 (2011); Gauguet et al., PRA 80, 063604 (2009); Gillot et al., Metrologia 51, L15-L17 (2014); 1) reduced in Karcher et al., NJP 20, 113041 (2018); Freier et al., JoP:CS 723, 012050 (2016); Hu et al., PRA88, 043610 (2013); Wu et al., Sci. Adv. 5, eaax0800 (2019); Bidel et al., Nat.Comm. 9, 2041 (2018); Bidel et al., JoG 94, 1432 (2020); muquans.com; McGuirk et al., PRA 65, 033608 (2002); Fixler et al., Science 315, 74 (2007); Biedermann et al., PRA 91, 033629 (2015); Chiow et al., PRA 93, PRA 93, 013602 (2016); Rosi et al., Nature 510, 518 (2014); Asenbaum et al. PRL 118, 183602 (2017)]

LASER INTERFEROMETRY

From observing geometry to understanding the forces ...

GRACE-FO observation systems

- Initial orbit height: 485 km
- Inclination: ~ 89°
- Key technologies:
 - GPS
 - Accelerometer
 - Ranging system
- Observation quantity:
 - distance (range)
 - change of distance (range rate)

Satellite Gravimetry with laser interferometry

Components for the next generation optical bench designs

 Laser ranging as main science instrument requires improved redundancy schemes

- Miniaturization of components
- Novel concepts

RFC AS A35

Dedicated Constellation Acquisition Systems

- Laser link acquisition is the most critical step during commissioning of the instrument
- Dedicated hardware mitigates risks and speeds up this process

MiniCAS:

Compact, modular, low SWaP design

Continuity of mass transport measurements

CHAMP (GFZ, 2000-2010)

GRACE (NASA/DLR, 2002-2017) GRACE-FO (NASA/GFZ, 2018-2030)

GOCE (ESA, 2009-2013)

Gravity missions enabled spectacular results:

- insights into the global water cycle
- polar and mountain ice mass loss
- changes in ocean surface currents
- unification of height systems
- ➤ sea level rise

Satellite Gravimetry in the post-MAGIC era - Accelerometry -

A) Cold Atom Interferometers

- Hybridization with optical sensor
- Absolute measurements
- Drift-free
- Superb precision

B) Gravitational Reference Sensor

- Based on heritage
 from LISA Pathfinder
- Superb precision
- Long-term stable
- Capacitive or optical readout
- Multi-axis optical readout requires compact interferometric setups

SATELLITE GEODESY AND GEODETIC MODELLING

ATOM INTERFEROMETRY IN SPACE

CARIOQA-PMP

stands for

Cold Atomium Rubidium Interferometer in Orbit for Quantum Accelerometry - Pathfinder Mission Preparation -

Through a Quantum Space Gravimetry Pathfinder Mission CARIOQA-PMP aims at developing a new technology to be used in space within the next decade: a quantum gravimeter/ accelerometer

Timeline

Preliminary satellite concept

from Lévèque et al. 2022

Consortium

CARIOQA-PMP brings together leading 17 players from 5 EU countries:

Anticipated sensitivity

ons Sensitivity
aboratory $5 \ge 10^{-8} \text{ m.s}^{-2}.\text{Hz}^{-1/2}$
$5 \times 10^{-7} \text{ m.s}^{-2}.\text{Hz}^{-1/2}$
ns
vity $6 \ge 10^{-7} \text{ m.s}^{-2} \text{.Hz}^{-1/2}$
1 x 10 ⁻¹⁰ m.s ⁻² .Hz ^{-1/2*}
$1 \ge 10^{-12} \text{ m.s}^{-2}.\text{Hz}^{-1/2}$

*Targeted Quantum projection noise floor

from Lévèque et al. 2022

LASER INTERFEROMETRY IN SPACE

The standard approach

Rummel et al. 1978

Sensing the pulse, but ...

Challenges of existing systems

The second dimension ...

Simulation results: 2D

Range-rate alongtrack only Smoother is better

Range-rate alongtrack+radial

The third dimension

Range observables:

$$\vec{X}_{AB} = \rho \cdot \vec{e}_{AB}^{a}$$
$$\dot{\vec{X}}_{AB} = \dot{\rho} \cdot \vec{e}_{AB}^{a} + \rho \cdot \dot{\vec{e}}_{AB}^{a}$$
$$\nabla V_{AB} = \ddot{\vec{X}}_{AB} = \ddot{\rho} \cdot \vec{e}_{AB}^{a} + 2 \cdot \dot{\rho} \cdot \dot{\vec{e}}_{AB}^{a} + \rho \cdot \ddot{\vec{e}}_{AB}^{a}$$

3D Approach:

36

$$\nabla V_{AB} \cdot \vec{e}_{AB}^{a} = \ddot{\rho} + 0 - \rho (\omega_{c})^{2}$$

$$\nabla V_{AB} \cdot \vec{e}_{AB}^{r} = 0 - 2 \dot{\rho} \omega_{c} - \rho \dot{\omega}_{c}$$

$$\nabla V_{AB} \cdot \vec{e}_{AB}^{c} = 0 + 0 - \rho \omega_{a} \omega_{c}$$

Weigelt 2017 The Acceleration Approach

GRACE-3D Payload Concept

Gravitational Reference Sensors will exploit LISA technology and enable a multi-dimensional observation

Simulation results: 3D

Range-rate alongtrack only Smoother is better Range-rate alongtrack+radial

Range-acceleration alongtrack+radial+crosstrack

Improving the spatial resolution by factor 1.5 – 2

10

5

-5

-10

5

-5

Gaussian Filtering with 400km radius

Gaussian Filtering with 300km radius

Gaussian Filtering with 200km radius

Difference to GOCO06s in EWH [cm] - Gaussian 300km

EXPLOITING LASER INTERFEROMETRY TODAY

Line-of-sight gravity difference

Rummel et al. 1978

Range to range-acceleration

$$\vec{X}_{AB} = \rho \cdot \vec{e}_{AB}^{a}$$
$$\dot{\vec{X}}_{AB} = \dot{\rho} \cdot \vec{e}_{AB}^{a} + \rho \cdot \dot{\vec{e}}_{AB}^{a}$$
$$\ddot{\vec{X}}_{AB} = \ddot{\rho} \cdot \vec{e}_{AB}^{a} + 2 \cdot \dot{\rho} \cdot \dot{\vec{e}}_{AB}^{a} + \rho \cdot \ddot{\vec{e}}_{AB}^{a}$$

- Multiplication with \vec{e}_{AB}^{a} $\ddot{\vec{X}}_{AB} \cdot \vec{e}_{AB}^{a} = \ddot{\rho} + \rho \cdot \ddot{\vec{e}}_{AB}^{a} \cdot \vec{e}_{AB}^{a}$
- Approximation by an empirical transfer function

$$\ddot{\vec{X}}_{AB} \cdot \vec{e}^{\,a}_{AB} = \Phi\left(\ddot{\rho}\right)$$

Single-track analysis capabilities

Example:

Goran

(2021)

Line-of-sight gravity differences allows observation of sub-monthly mass variations

Single-track analysis capabilities

Towards sensor combination

Spatial and Temporal Scales of Geophysical Processes

Augmentation with additional observations systems is needed.

Observation techniques:

- GNSS
- InSAR
- Clocks
- Terrestrial Gravimetry

Sensor combination

Combination requires a reliable, flexible and robust estimation technique. VDLR

Possible applications

Resource management Natural hazard monitoring and prediction

Clock-based height reference systems Observation of short-term geophysical signals

Future satellite concepts

Fundamental objectives

Exploit

Exploit quantum technology and relativistic modelling for geodetic applications

Integrate

Integrate space and terrestrial sensors

Establish

Establish gravity field observations on all temporal and spatial scales

THANK YOU

Matthias Weigelt (matthias.weigelt@dlr.de)

Quantum sensors for interplanetary missions

- Objective: Evaluating the potential of using quantum sensors for interplanetary missions
- Adapting VENQS for Mars simulations
- Planned extensions:
 - Precise gravity field model
 - Tides and 3rd body forces
 - Atmospheric drag
 - Solar radiation pressure + Albedo

