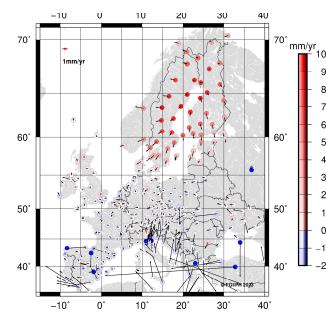
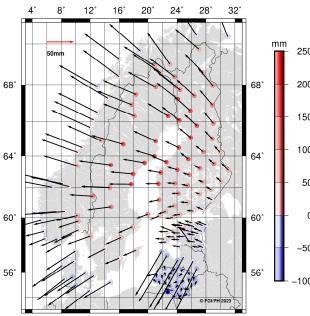


# Quick and dirty to NKG2020 transformation




Pasi Häkli

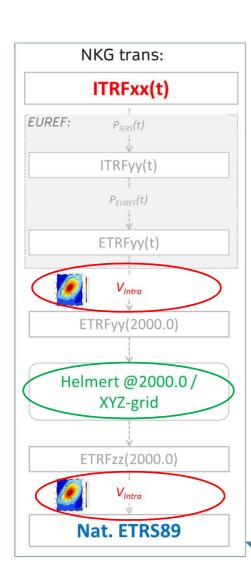

pasi.hakli@nls.fi

NKG WGRF meeting, Reykjavik, Iceland, March 13-14, 2024

# Background

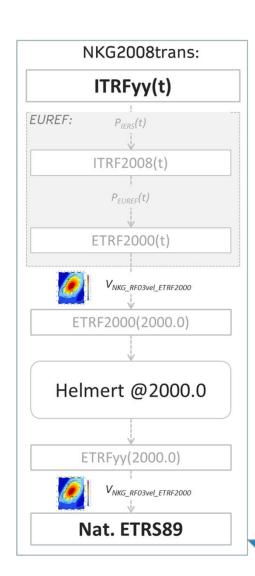
- Glacial Isostatic Adjustment (GIA) causes intraplate deformations in the Nordic and Baltic countries
  - Up to 1cm/yr in vertical and a few mm/yr in horizontal (see ETRF2014 velocities from EPN\_ETRF2014\_C2235 in the top figure)
- ETRS89 as a plate-fixed frame minimizes time-variability of coordinates via standardized EUREF transformation
  - It considers only the rigid Eurasian plate motion but not any intra- or interplate deformations → residuals may reach a few dm (see ITRF2014@2023.0 -> Nat. ETRFyy in the bottom figure)
  - Intraplate corrections not recommended (based on ETRS89 definition) but recognized necessary for some cases
- GIA has been one of the most important study subjects for the Nordic Geodetic Commission (NKG), e.g.:
  - Several land uplift models and NKG transformation approach






### NKG transformation

- Storing of geodata: national, static reference frame (Nordic-Baltic region: ETRS89 realizations)
- Positioning (coordinates): most accurate, global, dynamic reference frame (ITRFyy)
- Transformation considers crustal motions between these two reference frames ("two-frame approach", "semi-dynamic RF"):
  - Basis: EUREF transformation
  - Deformation model: intraplate corrections
  - National transformation parameters: differences btw pan-European and national realizations


#### → Accurate link between global (ITRFyy) and Nordic-Baltic (ETRFyy) reference frames

- E.g. for reference frame maintenance and monitoring
- Released versions: NKG2008, NKG2020



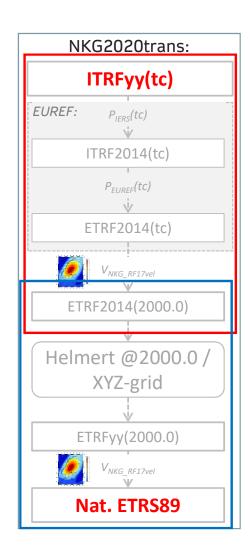
# NKG2008 transformation

- Released in 2016
  - https://doi.org/10.1515/jogs-2016-0001



### NKG2020 transformation

- Released in 2021
  - Uncertainty estimates and documentation in 2023
- Same methodology but all data updated:
  - ITRFyy coordinates: ITRF2014(2015.0) from NKG Repro1
  - National ETRFyy coordinates: revised and even some updated realizations
  - Deformation model: NKG\_RF17vel
  - National transformations:
    - New Helmert parameters: Denmark, Estonia, Finland, Latvia, Lithuania and Sweden
    - New method: correction grid for Norway


#### → Major update

Supersedes NKG2008 transformation



# NKG2020 uncertainty

- Helmert transformation residuals (and coordinate differences after correction grid)
  - A few mm accuracy (uncertainty) for most countries
  - Gives a picture of the expected uncertainty level but valid only for the coordinates used to determine the transformation parameters
- NKG2020 transformation has several steps that contain their uncertainties
  - Part of the steps time-dependent → also NKG2020 uncertainty timedependent
  - Uncertainty can be divided into constant and time-dependent parts
- Uncertainty can be estimated in several ways, here empirical approach selected
  - Estimated with different data sets



# NKG2020 uncertainty: constant part

- Constant part of the uncertainty estimated with four data sets:
  - NKG Repro1\_upd2020, EPN\_IGb14\_C2220, ITRF2020, IGS20 (not shown due to only a few common stations)
  - Epoch: 2015.0 (same as for parameter estimation)
  - Reference frame: ITRF2014 (IGb14), ITRF2020 (+IGS20)
- Accuracy: approximately same level for all solutions and compared to the residuals
  - Constant part (overall, for comparison purposes):
    1.7mm, 1.8mm, 3.6mm for N, E, U respectively
- NKG2020 transformation works also for ITRF2020 with the same accuracy

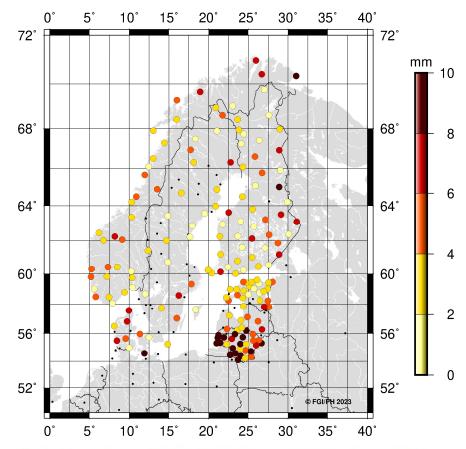



Table 6. NKG Repro1 upd2020: IGb14@2015.0, EPN\_IGb14\_C2220: IGb14@2015.0 and ITRF2020@2015.0 transformed to national ETRS89 realizations. rms of coordinate differences. \* Norway w/ correction grid

| rms     | NKG Repro1 upd2020:<br>IGb14@2015.0 |            |            |            | EPN_IGb14_C2220:<br>IGb14@2015.0 |            |            |            | ITRF2020@2015.0 |            |            |            |
|---------|-------------------------------------|------------|------------|------------|----------------------------------|------------|------------|------------|-----------------|------------|------------|------------|
| Country | n                                   | dN<br>[mm] | dE<br>[mm] | dU<br>[mm] | n                                | dN<br>[mm] | dE<br>[mm] | dU<br>[mm] | n               | dN<br>[mm] | dE<br>[mm] | dU<br>[mm] |
| DK      | 10                                  | 0.84       | 1.94       | 5.45       | 3                                | 0.51       | 1.71       | 3.21       | 5               | 1.19       | 2.06       | 2.77       |
| EE      | 25                                  | 1.89       | 2.10       | 2.10       | 4                                | 3.01       | 2.93       | 2.54       | 1               | 2.50       | 2.50       | 0.00       |
| FI      | 46                                  | 1.05       | 1.34       | 3.53       | 19                               | 0.64       | 0.40       | 1.36       | 3               | 1.18       | 1.09       | 2.81       |
| LV      | 6                                   | 0.96       | 3.29       | 2.38       | 1                                | 5.10       | 2.60       | 25.20      | 0               |            |            |            |
| LT      | 29                                  | 3.56       | 4.21       | 9.39       | 1                                | 6.50       | 2.30       | 36.10      | 1               | 6.70       | 1.30       | 41.50      |
| NO*     | 35                                  | 2.01       | 1.39       | 3.35       | 5                                | 2.49       | 2.87       | 2.59       | 6               | 2.88       | 2.75       | 3.30       |
| SE      | 67                                  | 1.17       | 1.18       | 2.67       | 30                               | 1.26       | 1.44       | 2.49       | 21              | 1.39       | 1.19       | 3.26       |
| Total   | 222                                 | 1.69       | 1.78       | 3.59       | 64                               | 1.47       | 1.59       | 2.41       | 39              | 1.79       | 1.84       | 3.31       |

# NKG2020 uncertainty: time-dependent part

- Time-dependent part of the uncertainty evaluated with position time series: NKG Repro1\_upd2020
  - Length of time series: 3.3-23.5 years, average: 13 years
  - Data cleaned: same discontinuities and data rejections as for NKG Repro1\_upd2020, number of solutions in TS: 1-6
  - Daily ITRF2014 coordinates transformed with NKG2020 transformation and compared to national ETRS89 coordinates → residual time series
- Residual time series analyzed with Hector
- Time-dependency (overall, rms): 0.1, 0.1, 0.3 mm/yr for N, E, U respectively
  - These values suggest a few millimeter stability over 10 years that can be considered very good result

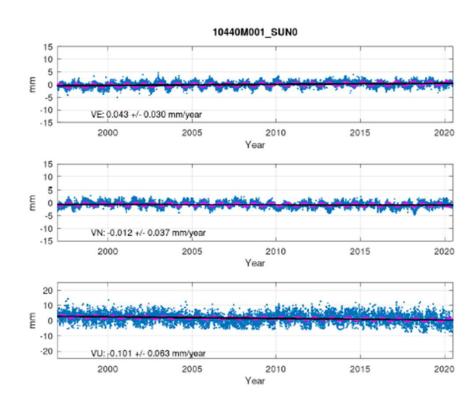


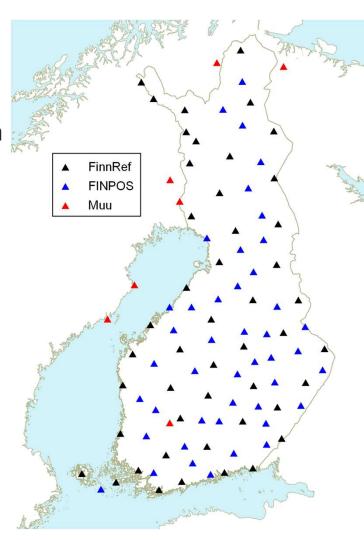

Figure 12. Example of the residual time series and velocities for SUN0 station in Sweden.

### Conclusions

- NKG2020 transformation supersedes previous version NKG2008.
- NKG2020 transformation serves as a link between ITRFyy and Nordic-Baltic ETRFyy realizations at a few millimeter-level, also over time.
  - Overall, we found the empirical accuracy (uncertainty at epoch 2015.0): 1.7 mm +/- 0.1 mm/yr,
    1.8 mm +/- 0.1 mm/yr and 3.6 mm +/- 0.3 mm/yr in North, East and Up components,
    respectively (1σ).
  - As a result, the accuracy degrades only a few millimeters in 10 years.
  - NKG2020 transformation was also shown to operate equally with the recently released ITRF2020.
- NKG2020 has been implemented in PROJ and in the future into EPSG and ISO registries
- Full documentation available: <a href="https://doi.org/10.1515/jogs-2022-0155">https://doi.org/10.1515/jogs-2022-0155</a>



# DynPos


(Dynamic coordinates in FINPOS positioning service)

Pasi Häkli, Topi Rikkinen, Marko Ollikainen and Simo Marila



# DynPos project

- A short pilot project carried out in 2020
- <u>FINPOS</u> is the positioning service of the NLS.
- FINPOS (like most of the positioning services) operates with official static EUREF-FIN coordinates that cannot account for the crustal motions and therefore become more and more inaccurate in time
- Purpose of the DynPos project was to study if the FINPOS positioning service can:
  - 1. be set up to operate in a dynamic reference frame,
  - provide user positions in dynamic and semi-dynamic reference frames,
  - 3. and if these <u>improve</u> the accuracy of the service

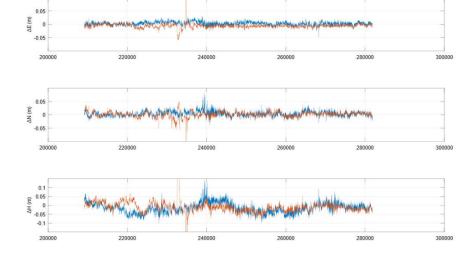


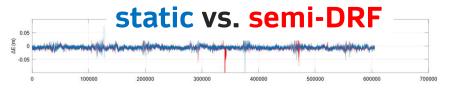
# DynPos: methods

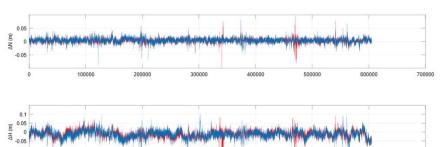
- Investigation of settings for positioning service software (GNSMART) for the use with dynamic coordinates
  - Only GNSMART 1 tested due to short project
  - Two servers in parallel:
    - Production service: static EUREF-FIN coordinates (internal deformation corrections to stations)
    - Research service: ITRF2014 coordinates, velocities and transformations
- Necessary data:
  - Dynamic ITRF2014 coordinates for FinnRef stations at epoch 2015.0 (NKG Repro1)
  - Station velocities (ITRF2014), with which GNSMART can determine coordinates at the observation (current) epoch
  - ITRF2014 reference coordinates for the mean epoch 2020.75 of the test
  - Semi-dynamic coordinates using GNTRSRVR transformation module and associated parameter file (system import format, sif)
    - Transformations according to the NKG2008 transformation (NKG2020 not yet available at the time):
      - Helmert parameters
      - Crustal motion corrections from NKG\_RF03vel model
    - Transformations sent via RTCM 3.2, message types 1021 and 1023

FINNISH GEOSPATIAL RESEARCH INSTITUTE FGI

# DynPos: methods


- Positioning service tested in a dynamic (DRF), semi-dynamic (semi-DRF) and static (SRF) reference frame with real-time VRS measurements
  - Test performed at two CORS stations (not included in the FINPOS service)
    - CORS data splitted to two GNSS receivers (same data) but corrected with different corrections from the positioning service (different mountpoints) → two of the above (DRF/semi-DRF/SRF) could be compared at the same time
  - Position time series, couple of days of data, new initialisation every minute
  - Positioning results compared to reference coordinates
    - DRF: ITRF2014(2020.75)
    - semi-DRF and SRF: EUREF-FIN


## DynPos: results


#### **Accuracies (see figures):**

- 1. Dynamic ITRF2014@2020.75
- 2. Semi-dynamic EUREF-FIN (ITRF2014@2020.75 + NKG transformation → EUREF-FIN)
- 3. Static EUREF-FIN, (without transformation; from "production" service, software defines coordinate corrections)
- Based on short tests accuracies approximately the same with all three methods
  - Horizontal: ~1cm
  - Vertical: ~2cm

#### **DRF** vs. semi-DRF







# DynPos: conclusions

- It is possible to set up FINPOS service to operate and provide positions in a global dynamic and semi-dynamic reference frames
  - Enables user positioning in a global reference frame, e.g. for aviation and maritime applications.
  - Enables implementation of a semi-dynamic reference frame (=NKG transformation)
- Accuracies approx. same with three methods, thus alternative methods provide same accuracies as the current production service
  - But NKG transformation approach more correct and transparent compared to the current method (where the software defines the corrections itself: "black box")
- Short test/project, therefore results preliminary and based on older version of the positioning service software, further tests needed:
  - Approach for GNSMART2 software
  - More testing needed with different RTK rovers, deeper analysis, etc.

# Knowing the Earth – Securing the future

