

Kibrom Ebuy Abraha

NKG Science Week 2024, Reykjavik, ICELAND 12-14 March 2024

GNSS Vulnerability

٠

٠

٠

GNSS interference threats

- GNSS signals have low power which can easily be disrupted
- Wider frequency bands
- Increased (un)intentional sources
 - Unintentional
 - Multipath, intersystem
 - Ionospheric scintillations
 - Radio Frequency Interference (RFI)
 - GNSS receiver, antenna
 - Intentional
 - Jamming Disrupts your signal
 - Spoofing Falsifies your position

ARNS: Aeronautical Radio Navigation Service

RNSS: Radio Navigation Satellite Service https://gage.upc.edu/gnss_book/

Baltic Jammer

Porbes https://www.forbes.com , ... , Aerospace & Defense ; GPS Spoofing Is Now Affecting Airplanes In Parts Of Europe

EU response to GPS jamming and spoofing

GPS-Based Devices in Baltic States Disrupted Russia has jammed signals to thwart Ukrainian drones

SWEPOS GNSS Signal disturbance monitoring and detection - Goals

Monitor	Detect	Respond
 Monitoring of anomalous events Using GNSS geodetic infrastructure – SWEPOS (not external monitoring system) Characterizing GNSS signals Monitoring signal strength Consistency check 	 Detect anomalous events Classify anomalous events Multipath? Equipment failure? RFI? 	 Contain the event Geolocate the source Assess the impact and continuity of the event Mitigate it Receivers, softwares Inform users

Unmitigated interference

- Flag off the station
- Move the station
- GNSS dependent Infrastructures should have a clear plan of recovering their system in the event of large scale attacks and have other alternatives.

SWEPOS[®] **GNSS** interference Monitoring

• Monitors all Swepos stations + third party stations = ~544 stations

SNR residuals characteristics

- Model SNR for each satellite (it takes receiver, elevation, azimuth, power flex, and other dependent effects into account)
- Get SNR residuals (model data) for each satellite
- SNR changes slowly unless interference is present
- Over a short period of time SNR can be treated as a stationary process
- Normally distributed
 - Shapiro-Wilk normality test of SNR residuals
 - Null hypothesis residuals are normally distributed
 - Null-hypothesis is rejected for p-value < 0.05 (reddotted line)
 - SNR residuals normally distributed over shorter periods
 - Over longer periods (longer than 6 hours), p-values fall below 0.05 for most of the stations

SNR residuals characteristics

• Cross correlation of SNR residuals among simultaneously tracked satellites.

RFI-related actual interferences detected by the system

Real signal interference incidents at Grisselham (0GIS)

Station: 0GIS

RFI centered at 1181.0 MHz, but affected a wideband (-5 MHz to +26 MHz)

0.6

0.4

PTS located the source to be a boat. The boat left the port on 1 October. The disturbance has since ceased. The source seems that same boat coming every year. PTS will follow up for more information on the equipment

LI disturbance - source located and contained

- RFI centered at 1581 MHz (~LI)
- 20-30 dBHz above the noise floor
- 5-6 MHz away from LI center
- Affected GPS/GLO/GAL LI
- Detected at more than one station.
- Didn't have a major import on the performance of the station
- Source was located and contained, GPS repeater in a lab

Radio Amateurs - Beacons at 1296, affecting Gal E6

- Six SWEPOS stations affected
- Why affecting Galileo E6?
 - E6 transmission can extend to 1296
- B3 is also slightly affected

Repeatrar & Fyrar

Kartan drivs och underhålls av Dan, SM6TZL – <u>Marks Amatörradioklubb</u> – SK6BA

LANTMÄTERIET

RFI Regional disturbance

- RFI centered at 1260, and 1325 MHz
- Affected GPS/GLO L2, BDS B3, Galileo E6
- Detected by several stations simultaneously
- Negligible impact on users
- PTS confirmed/detected the interference

Future development plans

- MSB The Swedish Civil and Contingencies Agency granted us with funding for further development
- Development includes
 - Monitoring web and API
 - Real-time monitoring service
 - Improvement of detection algorithm, support it with more parameters statistical characterization of AGC values
 - The plan is to deliver the new development at the end of the year
 - Initial planning starts in April

LANTMÄTERIET

NKG collaboration

NKG meeting in Copenhagen, April 2023

- Session/ topic: Interference (jamming and spoofing)
 Peter and Kibrom will discuss the possibility to include other countries into their interference monitoring system.
 Task force is active
- A station MPAS from Finland has been added
- We have access to the streams of the SRX messages
- Added to our monitoring in January 2024
- We have not established an automated way of sharing disturbance status information
- L2C disturbance that lasted about 5 minutes detected by both Swedish and Finish monitoring systems

LANTMÄTERIET

Nordic cooperation suggestions

- Joint Monitoring Stations
- Intererence information sharing and emergency response coordination
- Collaborative research and development within the GNSS cyber security
- Interference monitoring reporting standards and guidelines

Takeaway!

- The SWEPOS interference monitoring system has been effective in detecting signal disturbances of different sources
- No impactful interreferences for the NRTK service were detected, only on single stations
- No disruptions to the NRTK service due to the recent GNSS disruptions in the Baltic region
- Nordic-scale interference monitoring system would provide more comprehensive coverage and better situational awareness of GNSS interference events in the region demands Nordic cooperation
- Monitor-Detect-Respond
 - The goal is to protect critical GNSS and GNSS-dependent infrastructures against emerging (un)intentional threats; we should also use the same infrastructure for autonomous signal-situation awareness of threats.
 - Receiver and antenna manufacturers should consider interference threats when developing high-end GNSS receivers.
 - Users should make this part of a procurement when making receiver/antenna purchases