SUPPORT FOR BEIDOU IN SWEPOS NETWORK RTK SERVICE

UPGRADE OF THE SWEPOS INFRASTRUCTURE AND RESULTS FROM TEST MEASUREMENTS IN DIFFERENT SURVEYING ENVIRONMENTS

NKG SCIENCE WEEK, REYKJAVIK, 2024-03-13

KENT OHLSSON, TOMAS HOLMBERG, MARTIN SUNDLÖF, EMIL MÅRTENSSON

BACKGROUND

- Since 2018, the Network RTK service has been using GPS/GLO/GAL
- Using BeiDou is a natural step in improving the geodetic infrastructure
- Conditions that need to be met to add support for BeiDou
 - BeiDou generation three (BDS-3) expanded
 - Compatible antennas and reference station receivers
 - New RTCM version with support for the BDS-3 signals
 - Support for all three previous points in the Trimble Pivot Platform (TPP) software
 - IT environment and servers that support the increased CPU- and memory capacity needed for TPP using BDS-3

PREREQUISITES FOR THE INFRASTRUCTURE

- BDS-3 fully deployed in June 2020
 - The new BIC and B2A signals are relevant for network RTK
- Swepos Reference stations compatible with BDS-3 2022
 - Approximately 300 reference station changed to BDS-3 compatible receivers (Trimble Alloy or Septentrio PolarX5)
 - Firmware updated in all receivers
- RTCM support for BDS-3 2022
 - Needed for reference stations that not have a Trimble receiver
- Trimble Pivot Platform support for BDS-3 June 2023
 - Sparse network with Trimble receivers 2020
 - Summer 2023 all our receivers supported with BDS-3 in TPP
- Production servers upgraded November 2023
 - CPU power increased when updating TPP with version that support BeiDou

TEST MEASUREMENTS WITH BEIDOU

- Single station RTK 2020
- Functional test 2021 with Trimble, Leica and Topcon receivers
- Student Bachelor thesis spring 2022
- User specific tests in different surveying environments 2023
- Analysis of data from monitor stations 2021 & 2023

SINGLE STATION RTK 2020

- Purpose and test set up:
 - First test of using BeiDou in our receivers
 - Open and forest test sites, 10 km baseline
 - GGG vs, GGGB 4 h static RTK
 - Series with 20 "user measurements" with 5s and reinitialization
- Result and conclusions
 - We can achieve RTK fixed solution using also BeiDou
 - Some second faster time to fix with BeiDou
 - Hard to say something about standard uncertainty
 - Not more fix but maybe less bad fixed solutions (outliers)

FUNCTIONAL TEST 2021

- Purpose and test set up:
 - Evaluation of the sparse network function if no Trimble receiver at the closest reference station a longer baseline will be used
 - Turn on and turn off systems and signals in both TPP and or Trimble, Leica and Topcon receivers and see how the receivers react
 - Analyzing of data from monitor stations for standard uncertainty estimates
- Results and conclusions:
 - We got fixed solution with only BeiDou for Trimble and Leica
 - Some question marks which signals and systems that was used
 - Some problems for the receivers when the sparse function was activated
 - CPU-power hit the roof
 - No benefit of using sparse network with BeiDou when analyzing data from monitor station
 - Not worth to include support for BeiDou at this stage

STUDENT BACHELOR THESIS 2022

- Purpose and test set up
 - Test net with BeiDou ready reference stations
 - Simulation of measurement environments with three different elevation cut off: 15°, 30° and 40°
 - GGGB vs GGG and BeiDou vs GPS
 - Analysis of 10 and 180 s mean values and time to fix
- Result and conclusions
 - GGGB gives more fixed solutions and lower standard uncertainty in height for 40° cut off
 - GPS gives in general little more fixed solutions and faster time to fix than just BeiDou
 - <u>https://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-40037</u>

Undersökning av BeiDous påverkan på kvaliteten vid mätning med SWEPOS nätverks-RTK i svåra miljöer

> Emil Mårtensson 2022

USER SPECIFIC TESTS 2023

- Purpose and test set up
 - How will a network-RTK user benefit from using BeiDou?
 - GGGB vs GGG at the same time with similar equipment
 - Open, forest and urban environments
 - 4 h static RTK, 8*6 minutes and 8 loops of 5 points for user measurements

• Result and conclusions

- Used Lecia-receivers result are mostly relevant for Leica users
 - Some question marks which signals that was used
- Tendency for improved measurement uncertainty in the height component in more difficult measurement environments
- Indications of increased availability in point measurement, in more difficult measurement environments
- The user's needs and the available technology solution are important prerequisites for determining the added value of more satellite systems

MONITORDATA 2023

- Purpose and test set up
 - Reference stations receivers in RTK mode at permanent station in open surveying environment
 - Compare new and previous versions of TPP using same satellite systems
 - Adding BeiDou to existing GGG-corrections
 - Analysis of days with low and high ionospheric activity

• Result and conclusions

- More fixed solutions using corrections from old version of TPP, but also more outliers and higher standard uncertainty, especially with high ionospheric activity.
- Go from two to three satellite systems decrease the standard uncertainty, but adding a fourth system don't have any significant change in these open sky tests.

LANTMÄTERIET

BEIDOU RELEASE 29/2-2024

Network RTK connection points

Connection point	Data format	Data content
MSM_GNSS	RTCM 3.4 MSM4	GPS / Glonass / Galileo / Beidou
MSM_GEC	RTCM 3.4 MSM4	GPS / Galileo / Beidou
MSM_GRE	RTCM 3.4 MSM4	GPS / Glonass / Galileo
RTCM3_GNSS	RTCM 3.1	GPS / Glonass L1+L2
RTCM3_GPS	RTCM 3.1	GPS L1 + L2
RTCM2_GPS	RTCM 2.3	GPS L1 + L2
DGNSS	RTCM 2.3	Network DGNSS with GPS / Glonass

TACK! VI FINNS PÅ...

- WEBBPLATS <u>www.lantmateriet.se</u>
- LINKEDIN www.linkedin.com/company/lantmateriet
- FACEBOOK www.facebook.com/lantmateriet
- INSTAGRAM <u>www.instagram.com/lantmateriet</u>
- KONTAKT <u>kundcenter@lm.se</u>
- TELEFON
 0771-63 63 63

