

REPUBLIC OF ESTONIA

GeoRefAct

Harmonization of Estonian and Latvian geodetic systems in border areas

Andres Rüdja on behalf of the GeoRefAct team

NKG WGRF, Tallinn, Estonia, March 30 - 31 2023

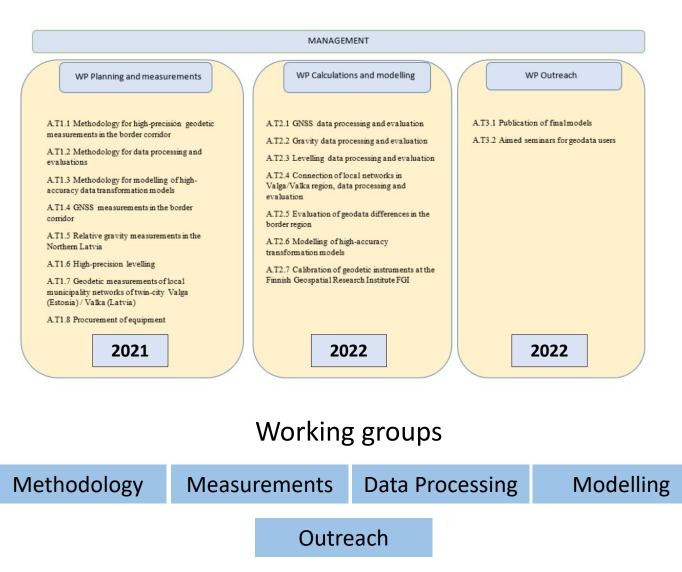
Project team

- **Department of Geodesy** • Jānis Sakne Madara Znotiņa Vents Zuševics **Aigars Keiselis** Elmārs Ozoliņš Andrejs Brants **Viesturs Sprogis** Jānis Lukstenieks Toms Līdumnieks Imants Bilinskis Ksenija Kosenko Ivars Liepiņš **Ervīns Rumsons**
- LATVIJAS ĢEOTELPISKĀS INFORMĀCIJAS AĢENTŪRA
 - Support
 - Inese Skolmeistere Ilze Platace Sanita Grotusa Arita Burve Lilija Ļvova Iveta Gruzīte Valdis Bērziņš Mārtiņš Liberts
- Department of Geodesy Andres Rüdja Jaanus Metsar Arvi Taru
 Su Toivo Tomingas Karin Kollo

Republic of Estonia Land Board

• Support Aigi Sarjas Anu Ots Kalver Keskküla Ene Raudsepp Helen Ernesaks Helena Orusalu Riho Kalda (KEMIT) Artu Ellmann Tambet Tiits

Estonia-Latvia European Regional Development Fund


Project "GeoRefAct"

- Interreg V-A Estonian-Latvian programme
- Project period 2021-2022
- Partners: Estonian Land Board (leader partner), Latvian Geospatial Information Agency

<u>Tasks:</u>

- Measurement and data processing of national GNSS and levelling networks in border area and in the twin-city of Valga/Valka and a gravity survey in Northern Latvia
- Estimation and modelling of coordinate and height differences
- Coordinate and height transition models for the border area, including their free availability as web-based services
 - ✓ Coordinates EE: EUREF-EST97 \leftrightarrow LV: LKS-92 (planar L-EST97 \leftrightarrow LKS-92 TM)
 - ✓ Heights EE: EH2000 \leftrightarrow LV: LAS-2000,5
 - ✓ Valga/Valka EUREF-EST97 \leftrightarrow LKS-92 (planar L-EST97 \leftrightarrow LKS-92 TM), EH2000 \leftrightarrow LAS-2000,5

Project "GeoRefAct"

PROJECT

GeoRefAct

Harmonization of Estonian and Latvian geodetic systems in border areas

Financed by the European Regional Development Fund: Co-financed by the partners:

425 000 €

75 000 €

www.estlat.eu

EUROPEAN UNION

Procurement of equipment

- Estonia-Latvia
 - -Latvia Development Fund EUROPEAN UNI

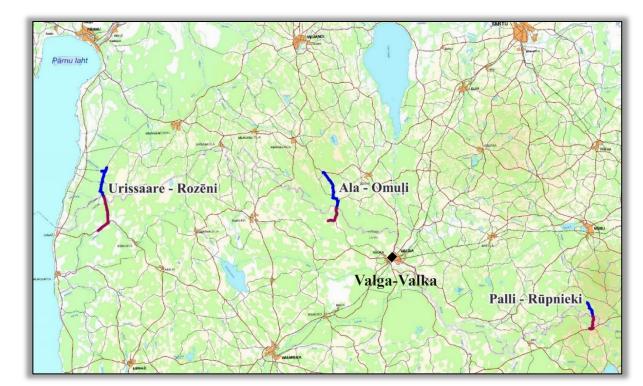
- Relative gravimeter
- High-precision level
- High-precision total station
- Upgrade of GNSS receiver (Leica GR25 -> GR50)
- Reference station GNSS receiver and antenna
- Meteorological sensor
- Geodetic software
- Field computers
- Establishment of geodetic benchmarks
- Calibration of geodetic instruments (level + rods, total station)

Interreg Estonia-Latvia European Regional Development Fund

Networking

- Mostly online meetings and e-mails Covid!
- Few physical meetings as well
- Measurements were made separately on the EE and LV sides, cross-border measurements were made together
- Relative gravity measurements in Latvia were done by LGIA and levelling in Valga/Valka by ELB
- Data processing and modelling were done independently by both partners, and then the results were evaluated together
- A series of solutions were calculated during the various data processing steps, the final ones of which are described below

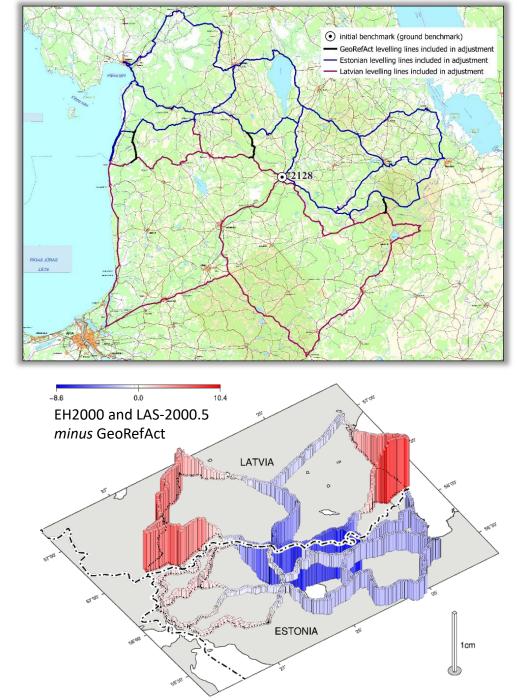
Management meeting in Valga, 25.08.2021



Working group meetings Tallinn and Valga 2022

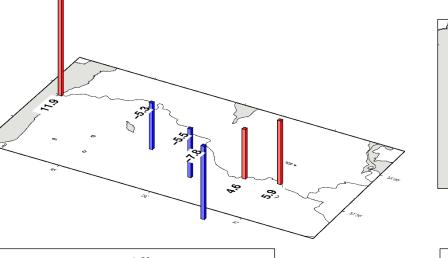
Levelling

- Four new connection lines in addition to four existing, 55 km
- High precision levelling, Leica LS15 (LGIA) and Trimble DiNi03 (ELB) + invar staff
- Measurements: 01.09 30.09.2021

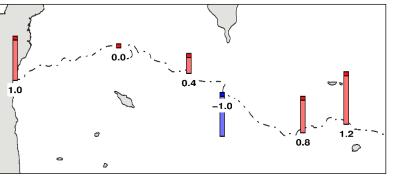


Levelling data processing

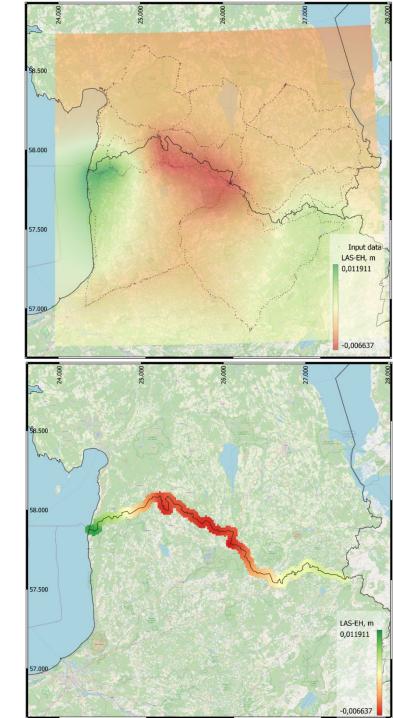
- Minimum constrained adjustment, EH2000 height of the benchmark No 2128 fixed
- Weighting by line groups
- Epoch 2000.0, NKG2005LU
- Zero tide


Estimated variance component	1.0		
Largest residual [mm]	1.15		
Average precision, H [mm]	±1.45		
Homogeneity of precision, <i>H</i> [mm]	Standard deviation	±0.98	
	MAX	±6.93	
	MIN	±0.05	

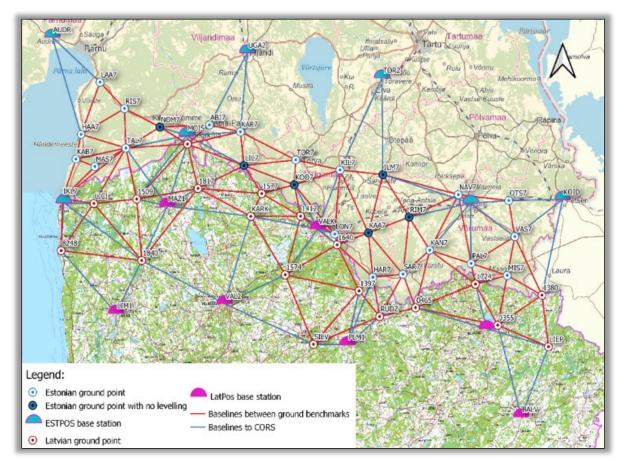
- Due to small differences, 3 mm or less, EH2000 and GeoRefAct heights were considered the same
- △H LAS-2000,5 EH2000/GeoRefAct were used for modelling



Height transition model


- GMT (*Generic Mapping Tools*) splines in tension, grid resample using splines
- Model area *B*: 24.2 27.5°, *L*: 57.4 58.2°
- Grid step: 0.02°/0.01° (*ca* 1.1 km)
- The model was cut into a 2+2 km wide buffer
- Estimates at observation points were at sub-mm level

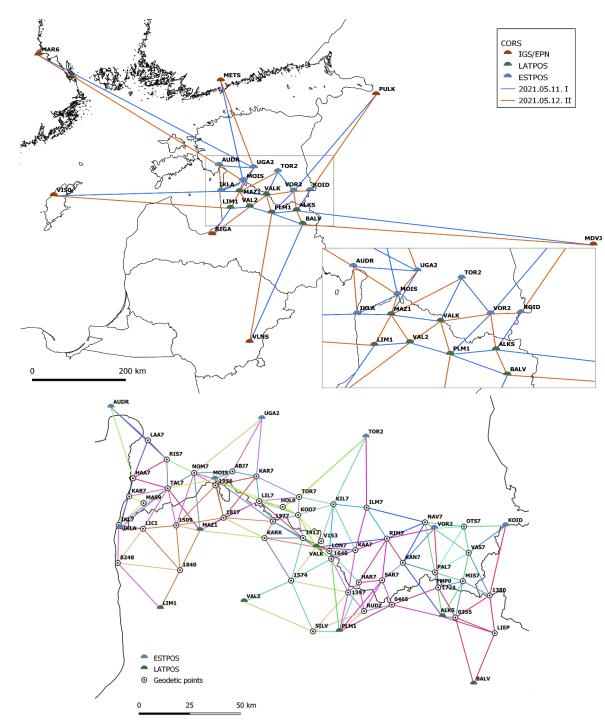
EH2000-LAS-2000,5 differences, unit mm



Model residuals, unit mm

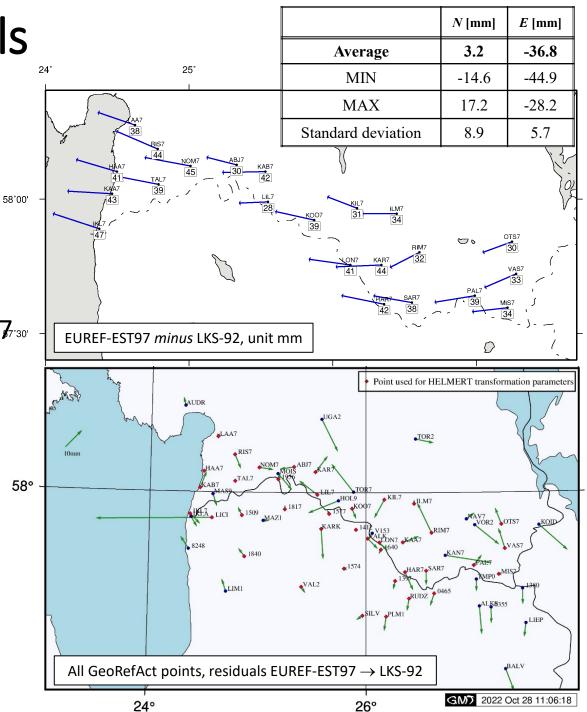
GNSS measurements

- LGIA: Leica Viva GS10 receivers/ Leica AR20 antennas
 ELB: Leica GRX1200GG PRO receivers/ LEIAT504GG antennas
- Static GNSS, 6h sessions, one sessioon per day, at least twice at each point
- 47 benchmarks, 14 ESTPOS/LATPOS
- Measurements: 11.05. 4.06.2021

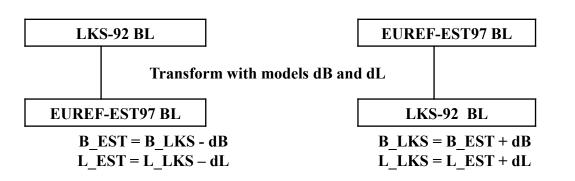


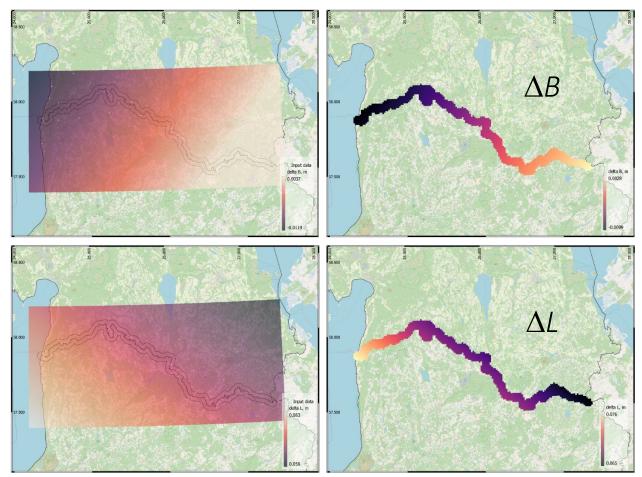
GNSS data processing

- Bernese 5.2 GNSS software, NKG and EPN guidelines with local refinements
- In two steps:
 - <u>Step1</u>: LatPos and ESTPOS stations with EPN/IGS stations as reference in IGb14
 - <u>Step2</u>: the GNSS static measurements with LatPos and ESTPOS stations as reference (epoch 2021.03.24)
- Repeatability, Step1:
 N = ±0.55 mm, E = ±0.67 mm, Up = ±2.29 mm
- Repeatability, Step2:
 N = ±3.87 mm, E = ±3.57 mm, Up = ±5.00 mm



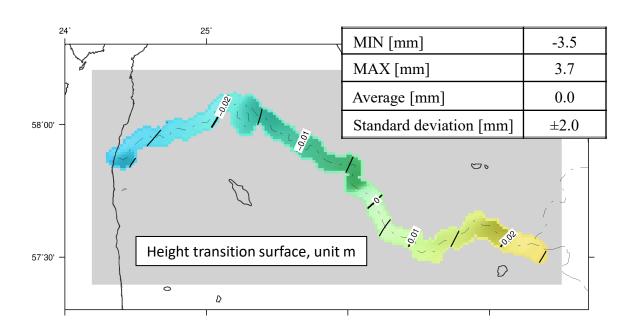
Coordinate transition models

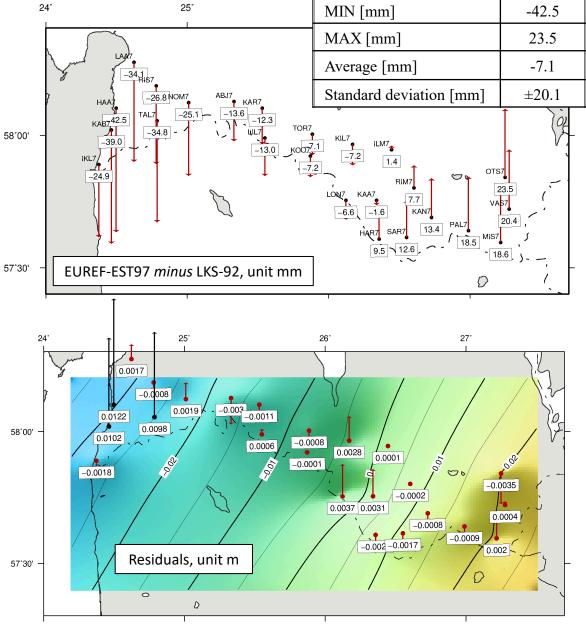

- To obtain the official LKS-92 coordinates, the Step2 network was readjusted using the LatPos official LKS-92 coordinates as reference in the minimum constraint solution
- To obtain the EUREF-EST97 coordinates for the points located in Latvia, the Step2 network was readjusted using the ESTPOS official EUREF-EST97-coordinates as reference in the minimum constraint solution
- 39 points, Helmert 7-paramter transformation LKS-92 \rightarrow EUREF-EST97
- Estimates at observation points were at the sub-cm level



Coordinate transition surface

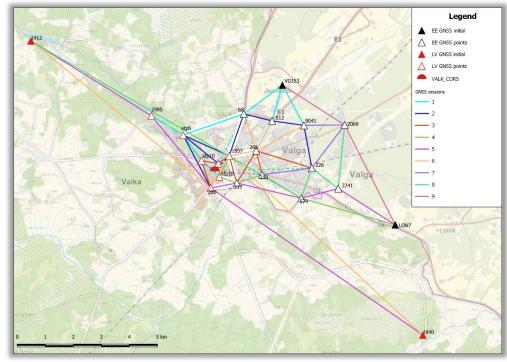
- From transformation the ΔL and ΔB differences LKS-92 \rightarrow EUREF-EST97 were obtained Sign reversed ΔL and ΔB for EUREF-EST97 \rightarrow LKS-92
- ΔL , ΔB gridding: 58 points, GMT splines in tension
- Model area *B*: 24.2 27.5°, *L*: 57.4 58.2°
- Grid step: 0.02°/0.01° (*ca* 1.1 km)
- The model was cut into a 2+2 km wide buffer

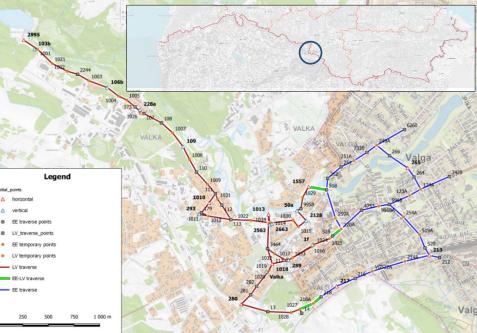




Transition surface for ellipsoidal heights

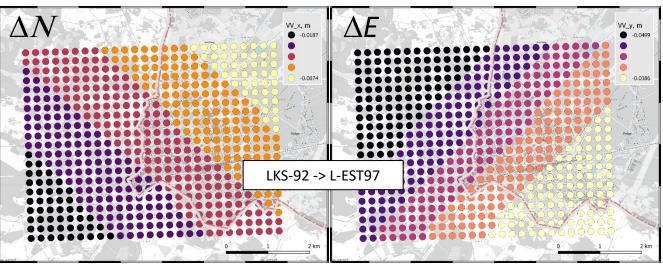
- Gridding EUREF-EST97 ↔ LKS-92: 24 points, GMT splines in tension
- Model area *B*: 24.2 27.5°, *L*: 57.4 58.2°
- Grid step: 0.02°/0.01° (*ca* 1.1 km)
- The model was cut into a 2+2 km wide buffer
- Estimates at observation points were at the submm level

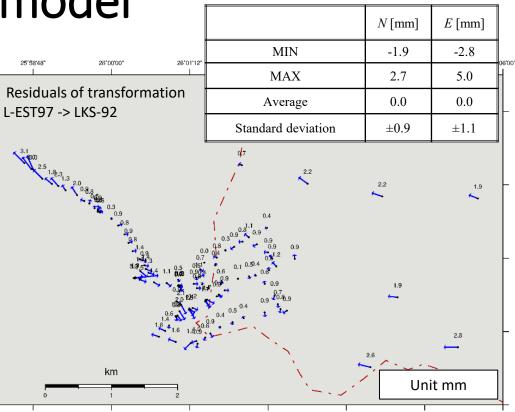




Twin city Valka\Valga

- Static GNSS: 1.5 hours, at least twice at each point
- Traverse: Trimble S9 0.5" Robotic DR Plus (LGIA) and Leica TS60 (ELB), three full sets measured
- Measurements: 17.08. 27.08.2021
- GNSS data processing: Trimble BC (LGIA), Leica Infinity (ELB)
- Traverse: TopoNet 6.3 (LGIA), Leica iCON (ELB), adjusted in LKS-92, L-EST97 and LKS-20, coordinates from GNSS network were used as reference





Valka\Valga coordinate transition model

- In two steps:
 - <u>Step 1</u>: Helmert 2D transformation L-EST97 \rightarrow LKS-92 TM with coordinates in the EE map projection LAMBERT-EST (LKS-92 TM_{x,y} \rightarrow LKS-92_{B,L} \rightarrow LKS-92_{LAMBERT-ESTx,y})
 - <u>Step 2</u>: by applying the transformation parameters, ΔN and ΔE between L-EST97 and LKS-92 (L-EST97 \rightarrow LKS-92_{LAMBERT-ESTx,y}) at grid nodes were obtained Sign reverse for LKS-92 \rightarrow EUREF-EST97
- Grid area *B*: 25.98 26.08°, *L*: 57.76 57.80° (*ca* 6×4.5 km)
- Grid step: 0.004°/0.002° (*ca* 220 m)
- Estimates at observation points were at the sub-mm level

Coordinate differences L-EST97 minus LKS-92 Coordinate differences border corridor

	<i>N</i> [mm]	<i>E</i> [mm]
Average	-13.0	-44.2
MIN	-7.1	-38.3
MAX	-18.9	-50.0
Standard deviation	2.5	2.5

	<i>N</i> [mm]	<i>E</i> [mm]
Average	3.2	-36.8
MIN	-14.6	-44.9
MAX	17.2	-28.2
Standard deviation	8.9	5.7

Residuals of transformation

Gravity measurements

- Scintrex CG-5 and CG-6 gravimeters
- Base station approach loops ending at the same point (about every 30 km)
- Measurements with step of 4 km in an area of 40 km from the border
- Measured April October 2022
- Gravity verification on levelling lines

Interreg V-A Estonian-Latvian programme

- Web-based calculators, free of charge
 - ✓ EUREF-EST97 \leftrightarrow LKS-92 (L-EST97 \leftrightarrow LKS-92 TM)
 - ✓ EH2000 \leftrightarrow LAS-2000,5
 - ✓ Valga/Valka EUREF-EST97 \leftrightarrow LKS-92 (L-EST97 \leftrightarrow LKS-92 TM)
- The large amount of geodetic information and measurement data collected during the project will enable solving other geodetic, geoinformatics and engineering tasks in the future

