Planet Ocean Geodesy for Sea level & Climate

Ole Baltazar Andersen Professor, DTU Space, Denmark

Acknowledging: Carsten Bjerre Ludwigsen (DTU) Steve Nerem (U. Colorado at Boulder) Stine K. Rose (DTU) DTU Space National Space Institute

GGGS

GGOS contributes the geodetic component of GEOSS. It provides:

The **reference frames** required for all location-dependent observations and thus contributes to the foundation of most Earth observations, and

The measurement of the time-variable geometrical shape, gravity field,

and rotation of the Earth, and thus contributes to the Earth observation database.

Monitoring long-term changes to geometrical shape (e.g., sea level, climate & plate motions) requires:

VERY high stability of the observation system & continuous observations.

Everything move

Sea-Level rise is a societal threat (long-term)

Low-lying coastal zone is home to 680 million people

For every cm of sea level rise 3 million extra people at flooding risk + retreat of 20.000 km2 land globally

IPCC predictions for 2100 show 0.43 - 0.84 meter increase of sea level

Sea level monitoring using Tide Gauges

Tide gauges monitor Relative Sea level

Can be affected by Local hydraulics, tectonics, GIA, etc

Importance: Records for up to 150 years

Permanent Service for Mean Sea level (IAG)

Satellite altimetry measures sea level for > 30 years

Measures: Absolute Sea level (ASL) Or Geocentric Sea Level GLOBALLY

Essential Climate Variable

Range precision = 1 cm mm stability over decades

Absolute vs Relative Sea level changes:

Altimetry (absolute SL) = Tide-Gauge (relative SL) + VLM (GNSS)

🛩 Absolute Sea Level Trends

Only at **coastal locations** with GNSS/Tide Gauge combination.

Global Isostatic Adjustment is "Linear" But applicable to Tide Gauge data.

DTUGIobal Mean Sea Level Variations

Ħ

Spatial sea level change

Sea level determins our Vertical Datums.

MSS is the Vertical reference for SL Anomalies MSS (DTU/CLS) are averaged over 20 years (1993-2012) The MSS becomes increasingly "outdated" with time

Danish DVR90 vertical Datums is fitted to sea level around 1990 DVR90 becomes increasing "outdated" with time.

Fortunately, GIA counteract this locally

Critical for computing sea level and flooding thresholds/exceedance etc.

Independent satellite data confirms GMSL change

DTU

Confirming sea level changes: Sea level budget closure

Altimetry (various satellites 1993-now)

Sea surface height: absolute sea level (ASL) w.r.t. a geocentric reference.

GRACE (2002-2017) and **GRACE-FollowOn (2018-now)**

Gravemetri: observes mass changes on the earth (both land and ocean), which alters the geoid.

T/S profilers (since 1950's, ARGO 2001-now)

In-situ temperature and salinity measurements can be converted to changes in density changes, called steric sea level.

Sea level budget closure

2022

DTU

Non-closure during 2016-2021

Ludwigsen, Andersen and Rose (2022)

Non-closure during 2016-2021

Non-closure during 2016-2021

What causes mis-closure:

Importance of stability of reference and observing systems over decades

DTU

The Acceleration in Global Mean Sea Level

DTU

What is causing the acceleration of GMSL?

1991 Eruption.

23 August 2022

Component	Time Period	Acceleration (mm/yr ²)	Reference
Greenland	1992.0-2020.0	0.027	Mankoff et al. 2021
Antarctica	1992.0-2017.4	0.028	IMBIE2
Mountain Glaciers & Small Ice Caps	2000.0-2020.0	0.013	Hugonnet et al. 2021
Thermosteric	2005.0-2021.0	0.038	Argo/NOAA
Pinatubo Eruption	1993.0-2021.0	0.020	Fasullo et al., 2016
ENSO Effects	1993.0-2021.5	- 0.036	Hamlington et al., 2020
Sum of Components		0.090	
Altimeter Observed	1993.0-2021.5	0.099	

DTU

Future GMSL rise

Projections of 21st-century GMSLR under Different RCPs from the IPCC 5th Assessment Report

Sea Level projections for Scandinavia

