TERRAIN CORRECTED SNOW THICKNESS FROM GNET
 Using GNSS-IR

Karina Hansen ${ }^{1}$, Trine S. Dahl-Jensen ${ }^{1}$, Kristine M. Larson ${ }^{2}$, Lars Stenseng ${ }^{1}$
${ }^{1}$ DTU Space - National Space Institute, Kgs. Lyngby, Denmark, ${ }^{2}$ Department of Aerospace Engineering Sciences, University of Colorado, Boulder, CO 80309, USA

NKG 2022

OTU DTU Space
National Space Institute

GNSS Interferometric Reflectomerty

 (GNSS-IR)

UTU DTU Space
\#. National Space Institute
${ }^{1}$ Figures from GitHub (Larson, 2019)

GNSS-IR

Y. Georgiadou and A. Kleusberg (1988)
multipath frequency

$$
f_{\Psi}=\frac{2 \cdot \mathrm{RH}}{\lambda} \cos (\alpha) \cdot \frac{\mathrm{d} \alpha}{\mathrm{~d} t}
$$

Penina Axelrad (2005)
the frequency extracted from SNR data is representative of the reflector height

$$
\begin{aligned}
\alpha & =>\sin (\alpha) \\
f_{\Psi} & =2 \mathrm{RH} / \lambda
\end{aligned}
$$

UTU DTU Space

 E National Space Institute${ }^{1}$ Figures from GitHub (Larson, 2019)

NORD

OTU DTU Space
\# National Space Institute

NORD - TERRAIN CORRECTION

OTU DTU Space
 玉 National Space Institute

NORD - SNow Thickness

OTU DTU Space
National Space Institute

NORD - VALIDATION

OTU DTU Space
\#

GNSS-IR PROCESSED GNET

GNET SNOW THICKNESS

Winter maximum average snow thickness				
GNET station	$18 / 19[\mathrm{~m}]$	$19 / 20[\mathrm{~m}]$	$20 / 21[\mathrm{~m}]$	$21 / 22[\mathrm{~m}]$
NORD	~ 0.91	~ 0.94	~ 0.83	NaN
TIMM	NaN	>0.69	>0.69	~ 0.60
MSVG	~ 1.05	~ 0.48	~ 0.55	~ 0.50
KMJP	~ 0.76	~ 1.19	~ 0.67	NaN
SCBY	~ 0	~ 0	~ 0	NaN

SCBY

DTU	DTU Space
National Space Institute	

Thank You for Listening!

DTU DTU Space
\# National Space Institute

