Monitoring the stability of height network in Tallinn using Sentinel-1 data

DATEL SILLE

Nordic Geodetic Commission General Assembly: Planet Ocean and Geodesy Copenhagen, September 5-8, 2022

www.datel.eu www.sille.space

Tõnis Oja Anti Gruno Contact: tonis.oja@datel.ee

 Hazards, changes, processes and damage can be identified and monitored:

- Infrastructure in urban areas
- Buildings, dams
- Mining, landslides
- Ports, airports
- Tunnels, railways
- Power-/pipelines
- Groundwater/oil extraction

Sille.Space – satellite-based monitoring e-service

Satellite-based monitoring service:

- Combines databases (clients, data, results), analysis tools (sarproz, GMT), map interface (MapServer), ...
- Method: multitemporal SAR interferometry (InSAR)
- Data: ESA Sentinel-1 C-SAR images
 - IW Mode, spatial and temporal resolution: 5x20 m, 6/12-day cycle

The following table contains a summary of useful orbital information for Sentinel-1A and –1B:

Altitude	Inclination	Period	Cycle	Ref. tube deviation	Local Time at Descending Node	
602 km	09 19 dog	08.6 min	12 days	100 m	18:00 hours	SEN
095 KIII	96. To deg	90.0 11111	TZ Udys	+- 100 m	18.00 Hours	<u>senti</u>

Study area

 The aim of InSAR analysis was to monitor the stability of benchmarks (BMs) in Tallinn city center

- Repeated levellings of 116 BMs
 - Uncertainty of heights: $u(H_{lev}) = 0.23-0.31 \text{ mm}$
 - Uncertainty of velocities: $u(v_{lev}) = 0.03 \text{ mm/y}$

Precise leveling campaigns of the Tallinn height network undertaken in 2007/2008 and 2019

Study area

 The aim of InSAR analysis was to monitor the stability of benchmarks (BMs) in Tallinn city center
Repeated levellings of 116 BMs

- Uncertainty of heights: $u(H_{lev}) = 0.23-0.31$ mm
- Uncertainty of velocities: $u(v_{lev}) = 0.03 \text{ mm/y}^{59^{\circ}26}$

Precise leveling campaigns of the Tallinn height network undertaken in 2007/2008 and 2019

InSAR analysis

Sentinel-1 data + persistent scatterer interferometry (PSI)

- Line-of-sight (LOS) velocities from ASC, DESC orbits
- Time frame: Jun 2016 Nov 2021 (5.4 y)
- Velocity solutions with about 250 and 50 images for long- and short-term periods (~1 yr)
- Filtering: ASI+sCoh. > 1.4, tCoh. > 0.7

InSAR analysis

Sentinel-1 data + persistent scatterer interferometry (PSI)

- Line-of-sight (LOS) velocities from ASC, DESC orbits
- Time frame: Jun 2016 Nov 2021 (5.4 y)
- Velocity solutions with about 250 and 50 images for long- and short-term periods (~1 yr)

• Filtering: ASI+sCoh. > 1.4, tCoh. > 0.7

InSAR analysis

Sentinel-1 data + persistent scatterer interferometry (PSI)

- Line-of-sight (LOS) velocities from ASC, DESC orbits
- Time frame: Jun 2016 Nov 2021 (5.4 y)
- Velocity solutions with about 250 and 50 images for long- and short-term periods (~1 yr)

• Filtering: ASI+sCoh. > 1.4, tCoh. > 0.7

RESULTS:

LOS velocities of PS points in 2016.06 - 2021.11:

- ASC: 14452 p,
- MEAN VEL = -0.3 (min -12.7, max 3.7) mm/y

 DSC: 16305 p, MEAN VEL = -0.1 (min -11.2, max 4.3) mm/y

• Mean uncertainty ± 0.46 (min 0.42, max 0.87) mm/y -3 From linear regression: $\sigma_{\hat{\beta}_1}^2 = \frac{SSR}{(n-2)S_{\chi\chi}}$ NB! Value about 5 times higher for short-term solutions

- Decomposition of LOS (*L*) to east-west (*E*), vertical (*H*): $s_L = s_E \sin \theta \cos \varphi + s_N \sin \theta \sin \varphi + s_H \cos \theta$
 - Solve linear system:

$$\begin{bmatrix} v_{L1} \\ v_{L2} \end{bmatrix} = \begin{bmatrix} \sin \theta_1 \cos \varphi_1 & \cos \theta_1 \\ \sin \theta_2 \cos \varphi_2 & \cos \theta_2 \end{bmatrix} \begin{bmatrix} v_E \\ v_H \end{bmatrix} = M \begin{bmatrix} v_E \\ v_H \end{bmatrix} \Longrightarrow \begin{bmatrix} v_E \\ v_H \end{bmatrix} = M^{-1} \begin{bmatrix} v_{L1} \\ v_{L2} \end{bmatrix}$$

- Decomposition of LOS (*L*) to east-west (*E*), vertical (*H*): $s_L = s_E \sin \theta \cos \varphi + s_N \sin \theta \sin \varphi + s_H \cos \theta$
 - Solve linear system:

- How to combine different orbits?
 - L1 (ASC), L2 (DESC) points do not overlap spatially

- Decomposition of LOS (*L*) to east-west (*E*), vertical (*H*): $s_L = s_E \sin \theta \cos \varphi + s_N \sin \theta \sin \varphi + s_H \cos \theta$
 - Solve linear system:

$$\begin{bmatrix} v_{L1} \\ v_{L2} \end{bmatrix} = \begin{bmatrix} \sin \theta_1 \cos \varphi_1 & \cos \theta_1 \\ \sin \theta_2 \cos \varphi_2 & \cos \theta_2 \end{bmatrix} \begin{bmatrix} v_E \\ v_H \end{bmatrix} = M \begin{bmatrix} v_E \\ v_H \end{bmatrix} \Longrightarrow \begin{bmatrix} v_E \\ v_H \end{bmatrix} = M^{-1} \begin{bmatrix} v_{L1} \\ v_{L2} \end{bmatrix}$$

- How to combine different orbits?
 - L1 (ASC), L2 (DESC) points do not overlap spatially
 - Gridding

GMT - The Generic Mapping Tools, an open source software, <u>https://www.generic-mapping-tools.org/</u>

- Gridding of LOS velocity models with GMT
 - blockmean: dLon/dLat = 1.44"/0.72" = 0.0004°/0.0002° (~23/22 m)
 - surface (2D splines, T=0.3)
 - grid nodes with a distance more than 300 m from the nearest PS points were set to NaN
- *E*, *H* models with grdmath: $[v_E v_H]^T = M^{-1} [v_{LOS1} v_{LOS2}]$

• Variance grids: $[D(v_E) D(v_H)]^T = M^{-1} [D(v_{LOS1}) D(v_{LOS2})]^T (M^{-1})^T$

- Reference for *E*, *H* models: v_{2D} = 0.0 mm/y at pGNSS "MUS2"
 - VEL (2012.3 2021.9, dT = 9.6 a) in IGS14 (from <u>http://geodesy.unr.edu/NGLStationPages/stations/MUS2.sta</u>): $v_E = -0.17 \pm 0.19$ mm/y and $v_H = 3.14 \pm 0.79$ mm/y

Long term solution

Velocity solutions for east-west (*E*) and vertical (*H*) components (2016-2021) decomposed from the LOS velocities. The solutions have been fixed at the location of "MUS2" permanent GNSS station

Long term E, H solutions

Short term *H* solutions

A series of vertical velocity models from yearly InSAR analyses to monitor shortterm deformation changes in Tallinn city center

Comparison 1

The comparison of the leveled (2007-2019) and InSAR velocities (2016-2021) at 116 BMs of the Tallinn height network

Testing statistical significance of differences $dv = v_{lev} - v_{psi}$ between leveled and InSAR velocities:

O – significant **dv** at 12 BMs (10%)

Mean uncertainty (2 σ): $u(v_{lev}) = 0.06 \text{ mm/y}$ $u(v_{psi}) = 0.84 \text{ mm/y}$ $u(dv) = \pm 0.84 \text{ mm/y}$

Comparison 2

Velocities from yearly InSAR solutions at the benchmarks of Tallinn height network

Important to understand these findings to evaluate InSAR results

Historical studies based on repeated leveling:

- Maps of vertical land movement (VLM) compiled by Zhelnin (1958), Lutsar (1965), Vallner and Lutsar (1966), Kall and Torim (2003)
 - The sinking of the Tallinn city center was noticed in 1951
 - In 1960s, the highest subsidence rates up to 30 mm/year were observed
 - From 1964 onwards, the sinking rate decreasing, the leveling repeated within 1986-2000 showed that sinking stopped or reversed into rising
- A correlation has been found between the leveling results, the geological structure and groundwater level changes

Largest VLM rates over the ancient valleys buried under quaternary sediments

Groundwater level in Tallinn

-4.5

-5

2015 2016 2017 2018 2019 2020 2021 2022

Year

Groundwater level variations in Tallinn in 2015-2022 (KESE 2022). For smoothing a Gaussian filter with 1 yr long window length was used. The gray area presents the time period covered by the InSAR measurements.

Statistics over different areas

 Mean value with standard deviation (represented by error bars) was estimated over

- The nodes of InSAR vertical velocity grids (blue)
- The leveled and InSAR derived velocities at the benchmarks (red)
- The gray background separates long-term solutions (leveling, InSAR) from yearly solutions (InSAR)
- The statistics were estimated for all study area (all), Kadriorg and Lilleküla buried valleys, and the rest (valleys excluded)

Conclusions

InSAR is suitable to monitor the stability (and accuracy) of geodetic infrastructure

- Long-term InSAR results were consistent with repeated leveling
- Differences not significant at 104 BMs (90%)

Conclusions

InSAR is suitable to monitor the stability (and accuracy) of geodetic infrastructure

- Long-term InSAR results were consistent with repeated leveling
- Differences not significant at 104 BMs (90%)

Short-term InSAR analysis showed subsiding and uplifting city center of Tallinn

- The effect of hydrogeological process: temporal coherence with groundwater level change, spatial coherence with buried valleys
- Q: The effect on the city environment and infrastructure of Tallinn?

Conclusions

InSAR is suitable to monitor the stability (and accuracy) of geodetic infrastructure

- Long-term InSAR results were consistent with repeated leveling
- Differences not significant at 104 BMs (90%)

Short-term InSAR analysis showed subsiding and uplifting city center of Tallinn

- The effect of hydrogeological process: temporal coherence with groundwater level change, spatial coherence with buried valleys
- Q: The effect on the city environment and infrastructure of Tallinn?
- A: New InSAR analysis complemented with terrestrial geodetic measurements, rigorous hydrogeological modeling and additional geological, hydrological data would be a useful tool to model processes and predict the land motion in Tallinn
- Paper submitted:
 - Oja, T., and Gruno, A. (2022) Monitoring of millimeter-scale deformations in Tallinn using repeated leveling and PS-InSAR analysis of Sentinel-1 data. Advances in Geodesy and Geoinformation

Thank you for your attention! Questions?

Tonis.Oja@datel.ee Anti.Gruno@datel.ee

Groundwater level in Tallinn (2)

Buried valleys in Tallinn

 Geology (buried valleys, bedrock escarpments)

Geological base map 1:50000 Estonian Land Board 2021 geoportaal.maaamet.ee