

Recent Airborne Gravity Surveys in Denmark and their impact on Geoid Computations

Tim E. Jensen, Hergeir Teitsson & René Forsberg DTU Space, Technical University of Denmark

TECHNISCHE UNIVERSITÄT DARMSTADT

LANTMÄTERIET

DTU DTU Airborne Gravity Surveys in the Nordic / Baltic Area

Airborne projects carried out by DTU Space in collaboration with other partners

The "FAMOS Dataset" Excluding Airborne Observations

Dense data coverage in area

So why include airborne data?

- Main advantage: Data coverage⁵⁹
- Some "data gaps" covered
- Coastal areas covered (seamless ocean-land transition)
- Potential coverage of mountain regions (which are often only measured in mountain valleys)

Main challenge

DTU Space

National Space Institute

- Moving-base gravimetry introduces the topic of spatial resolution
- Possible introduction of "long wavelength" errors

Distance to Nearest Data Point

Procedure:

- 1. Interpolate to regular grid
- 2. Upward continue to flight altitude (GRAVSOFT geofour) 59
- 3. Interpolate to flight lines
- 4. Form differences with airborne estimates
- Sort away points more than
 2 km from ground data

Project	Mean	Std
Skagerak-96	1.14	2.51
Baltic-99	0.99	2.18
BalGRACE-06	1.00	1.64
NorthGRACE-07	1.25	1.90
NorthGRACE-08	1.05	1.84

DTU Space National Space Institute

In 2016 DTU Space purchased an iMAR-iNAT-RQH Inertial Measurement System for strapdown gravimetry

First test flight immediatly afterwards (~1h installation time) 58.5

4 cm

DTU The Strape

The Strapdown Setup

Small and easy setup = practical advantages and operational flexibility!

iMAR iNAT-RQH (2016)
Inertial Measurement Unit
Size: ≈ 19 x 13 x 30 cm (shoebox size)
Weight: ≈ 8 kg

JAVAD DELTA GNSS Receiver Size: $\approx 3 \times 10 \times 15 \text{ cm}$ Weight: $\approx 0.4 \text{ kg}$ NovAtel ANT-532-C Dual Frequency GNSS Antenna Size: $\approx 3 \times 8 \times 12 \text{ cm}$ Weight: $\approx 0.2 \text{ kg}$

Batteries Size: ≈ 10 x 15 x 20 cm Weight: ≈ 7.3 kg

Cables Laptop Total weight ≈20 kg

Main challenge: Long-term drift and bias issues!

Hypothesis: Sensors are sensitive to temperature variations.

iTempStab (2018) Temperature Stabilization Box

Size: $\approx 25 \times 22 \times 38 \text{ cm}$ Weight: +10 kg Power consumption: max. 175 W (temp. dependent)

-> Can no longer run on batteries only

In 2018 DTU and Lantmäteriet carried out the "Kattegat-18" survey, testing the iTempStab prototype

NKG General Assembly | Tim E. Jensen (timj@space.dtu.dk)

DTU Data Coverage and Resolution: Strapdown vs. Platform

iMAR gravity disturbance estimates ZLS gravity disturbance estimates

Cross-over statistics

Gravity Disturbance [mGal]

	iMAR	ZLS	
Crossings	63	12	
Mean	0.0	0.3	mGal
Std. dev.	1.5	2.6	mGal
RMSE	1.0	1.8	mGal

iMAR - database statistics

Project	Mean	Std	
Kattegat-18	-0.70	1.29	mGal

DTU Space National Space Institute

DTU Space National Space Institute

Bioflight

iMAR RQH IMU with iTempStab

24V Inverter, Battery Charger and Battery Package

-30 ja iMAR – Database differences

Ground (grid+upw+int) [mGal]

Project	Mean	Std
Kattegat-18	-0.70	1.29
Samsoe-19	2.17	2.11
Vestkyst-20	2.24	2.74
Smaaland-21	-34.98	9.10

40

DTU Space National Space Institute

Correcting Data for Bias and Drift

Internal cross-over statistics after correction

	Mean		
Project	No correction	Linear correction	Quadratic correction
Samsoe-19	2.6	1.0	0.7
/estkyst-20	0.6	0.5	0.8
Smaaland-21	7.6	3.7	14.3
	Root-Mean-Square-Error (RMSE)		
Samsoe-19	2.5	1.5	1.4
/estkyst-20	2.0	1.8	2.4
Smaaland-21	11.3	5.7	10.0

- Linear and quadratic models are fitted to the differences
- These models represent a longterm "trend"
- They can be applied as a

correction to the data

Influence on the (Quasi-) Geoid

DTU Space National Space Institute

DTII

NKG General Assembly | Tim E. Jensen (timj@space.dtu.dk)

Conclusions and Outlook

Conclusions

- Airborne measurements represent a significant contribution to the Baltic / FAMOS gravity data
 - Significant data coverage
 - Fills data voids
 - Potentially large influence on computed geoid (up to 50 cm!)
- Airborne measurements systems have undergone significant technological advances during the last 10 years
 - Improved resolution and spatial coverage
 - Small carriers
- Airborne data have potential bias and long-wavelength errors that could prograte into the Geoid if not properly taken care of

Outlook

DTU Space

National Space Institute

- Methodology for comparing airborne and ground data, i.e. upward/downward continuation, should be further investigated (e.g. remove-compute-restore and collocation)
- Airborne (and shipborne) gravity data should be investigated for potential bias and long-wavelength errors
- Processing methods that directly account for bias and long-wavelength errors should be explored

