"

-
&i atlonale \\ Essentia's

Rust Geodesy (RG) is a platform for

- experiments with geodetic software, originally RG exposes a rich set of geometric geodesy primitives, including geodesics, directly at the
&'M intended for experiments with PROJ data row « API level. Also:
models. "+ Macros and user defined operators fully supported at the APl and command line level
» Rationalized pipeline syntax: Higher clarity through less verbosity
o = RG implements an overall architecture much « Clear and explicit syntax for coordinate order and unit adaptation through the adapt
like PROJ’s, but by a radical re-design, a operator
ad much reduced selection of non-essential « Strict four dimensional data flow architecture, for simple extensibility and maintenance
- functionality, and the use of an
' implementation language, Rust, wonderfully The actual transformation functionality of RG is, however, minimal: At time of writing, it
» ~ fitfor the purpose, it has been possible to includes just a few low level operations, including:
‘. -’ keep the implementation limited to less than
"4/‘ 5000 lines of code (compared to PROJ’s r + The three, six, seven, and fourteen-parameter versions of the Helmert transformation
F, 2 400000). .+ Horizontal and vertical grid shift operations
i * Helmert's companion, the cartesian/geographic coordinate conversion
! ‘\ Hence, it is much easier to test alternative + The full and abridged versions of the Molodensky transformation
* | = data flow models and architectural/conceptual « Three widely used conformal projections: The Mercator, the Transverse Mercator, and the
4 abstractions in RG than in PROJ (hear my talk Lambert Conformal Conic projection
in session 5, Wednes-day for an example of * The adapt operator, which mediates between various conventions for coordinate units
:"- why the latter is essential). and order
r -

. RG is not intended as a replacement for While this is sufficient to test the architecture, and while supporting the most important
-:.'-f-’PROJ’ but as a platform for experiments, transformation primitives and three of the most used map projections, it is a far cry from
i i, W e ideas for future PROJ development can & % pRroJ's enormous gamut of supported map projections (which, however, is partially

.+ be tested and iterated on in a compact code “" supported through a bridge to the proj projection program).

- environment, where new conceptual ideas
FH"' §_'may have a better chance of staying clear cut, % gq fundamentally, RG is a geodesy, rather than cartography library. And while PROJ

-
=

and hence. proYide a bluepr.int ‘_’f inspirz,!tion . benefits from four decades of reality hardening, RG, being a platform for experiments, does
for potential reimplementation in PRO_J s - F'Ot even consider development in the direction of operational robustness. RG is however, &
- much larger and somewhat more hostile cod \ :d_m_the ground up built for built for multithreaded and parallel execution, hence

; andscape. . strea ing a Iarge cla tro&tt d onto PROJ. ‘
a W o ‘,\.“ ; \5“ w 25

Why Rust? xamples

- /The PROJ data flow architecture is in bad 1. Si lified pipeli t
- need of a redesign. But changing the data 3 - Simpiitied pipefine syntax

» 3 flow architecture is equivalent to changing
J ¥ PrOJ:
.'the entire system, so the obvious solution is . —pipeld
to build a new data flow scaffolding, then A Pr°J'P;Pe ine —cart ellps=intl
porting the existing functional blocks to that = step proj=cart eLlps=in
" step proj=helmert x=-87 y=-96 z=-120
scaffolding. A .
)‘ ; step proj=cart inv ellps=GRS80
e 1 _n‘ » After two unsuccesful attempts in C, and two RG:
in C++ (the two languages already used in : t ellps=intl | helmert x=-87 y=-96 z=-120 | £ i
" PROJ), | decided to take a radical detour into cart ellps=in etmert x= y= 2= cart inv
F . atotally different language. And Rust seemed 2. Coding in R
to fit the bill: Very different than the C family, - Coding in Rust
=& but also sufficiently alike, and with the added n mainQ) {
i bonus of being type safe, having good {ée[glog::;??;::::h:l:?:t‘:hand for accessing the major functionality
traction, very helpful compiler warnings, and
. // [1] Build some context
. an extremely helpful user community. The Tlet mut ctx = Minimal::default();
result was Rust Geodesy. - .
: // [2] Obtain a handle to the utm-operator
. y - let utm32 = ctx.op("utm zone=32").unwrap(); -,
: VIeWIng RG ,as "another PROJ" will lead to : // [3] Coordinates of some Scandinavian capitals it
= < bad dlsappomtment: RGis a platform {4 \ let copenhagen = Coord::geo(55., 12., 0., 0.);
\ experiments, not an attempt at something F let stockholm = Coord::geo(59., 18., 0., 0.);
operational // [4] Put the coordinates into an array
let mut data = [copenhagen, stockholm];
.I{I / You may, however, through RG catch a weak “ // [5] Then do the forward conversion, i.e. geo —> utm
--, mirage of a potential shape of jazz to come for‘ ;ﬁiniﬁﬁlﬁ“f’}"”daﬂ? e datai

// [6] And go back, i.e. utm -> geo
ctx.apply(utm32, Inv, &mut data);
println!({:?}, data);

. ' the PROJ internal dataflow.

