
A platform for experiments with geodetic software
Thomas Knudsen, SDFI, Copenhagen, Denmark, thokn@sdfi.dk

Rationale
Rust Geodesy (RG) is a platform for
experiments with geodetic software, originally
intended for experiments with PROJ data flow
models.

RG implements an overall architecture much
like PROJ’s, but by a radical re-design, a
much reduced selection of non-essential
functionality, and the use of an
implementation language, Rust, wonderfully
fit for the purpose, it has been possible to
keep the implementation limited to less than
5000 lines of code (compared to PROJ’s
400000).

Hence, it is much easier to test alternative
data flow models and architectural/conceptual
abstractions in RG than in PROJ (hear my talk
in session 5, Wednes-day for an example of
why the latter is essential).

RG is not intended as a replacement for
PROJ, but as a platform for experiments,
where ideas for future PROJ development can
be tested and iterated on in a compact code
environment, where new conceptual ideas
may have a better chance of staying clear cut,
and hence provide a blueprint of inspiration
for potential reimplementation in PROJ’s
much larger and somewhat more hostile code
landscape.

Essentials
RG exposes a rich set of geometric geodesy primitives, including geodesics, directly at the
API level. Also:
• Macros and user defined operators fully supported at the API and command line level
• Rationalized pipeline syntax: Higher clarity through less verbosity
• Clear and explicit syntax for coordinate order and unit adaptation through the adapt

operator
• Strict four dimensional data flow architecture, for simple extensibility and maintenance

The actual transformation functionality of RG is, however, minimal: At time of writing, it
includes just a few low level operations, including:

• The three, six, seven, and fourteen-parameter versions of the Helmert transformation
• Horizontal and vertical grid shift operations
• Helmert's companion, the cartesian/geographic coordinate conversion
• The full and abridged versions of the Molodensky transformation
• Three widely used conformal projections: The Mercator, the Transverse Mercator, and the

Lambert Conformal Conic projection
• The adapt operator, which mediates between various conventions for coordinate units

and order

While this is sufficient to test the architecture, and while supporting the most important
transformation primitives and three of the most used map projections, it is a far cry from
PROJ's enormous gamut of supported map projections (which, however, is partially
supported through a bridge to the proj projection program).

So fundamentally, RG is a geodesy, rather than cartography library. And while PROJ
benefits from four decades of reality hardening, RG, being a platform for experiments, does
not even consider development in the direction of operational robustness. RG is however,
from the ground up built for built for multithreaded and parallel execution, hence
streamlining a large class of functionality, that has been retrofitted onto PROJ.

Why Rust?
The PROJ data flow architecture is in bad
need of a redesign. But changing the data
flow architecture is equivalent to changing
the entire system, so the obvious solution is
to build a new data flow scaffolding, then
porting the existing functional blocks to that
scaffolding.

After two unsuccesful attempts in C, and two
in C++ (the two languages already used in
PROJ), I decided to take a radical detour into
a totally different language. And Rust seemed
to fit the bill: Very different than the C family,
but also sufficiently alike, and with the added
bonus of being type safe, having good
traction, very helpful compiler warnings, and
an extremely helpful user community. The
result was Rust Geodesy.

Viewing RG as "another PROJ" will lead to
bad disappointment: RG is a platform for
experiments, not an attempt at something
operational.

You may, however, through RG catch a weak
mirage of a potential shape of jazz to come for
the PROJ internal dataflow.

Examples
1. Simplified pipeline syntax

PROJ:
proj=pipeline

step proj=cart ellps=intl
step proj=helmert x=-87 y=-96 z=-120
step proj=cart inv ellps=GRS80

RG:
cart ellps=intl | helmert x=-87 y=-96 z=-120 | cart inv

2. Coding in Rust

fn main() {
// [0] Conventional shorthand for accessing the major functionality
use geodesy::preamble::*;

// [1] Build some context
let mut ctx = Minimal::default();

// [2] Obtain a handle to the utm-operator
let utm32 = ctx.op("utm zone=32").unwrap();

// [3] Coordinates of some Scandinavian capitals
let copenhagen = Coord::geo(55., 12., 0., 0.);
let stockholm = Coord::geo(59., 18., 0., 0.);

// [4] Put the coordinates into an array
let mut data = [copenhagen, stockholm];

// [5] Then do the forward conversion, i.e. geo -> utm
ctx.apply(utm32, Fwd, &mut data);
println!({:?}, data);

// [6] And go back, i.e. utm -> geo
ctx.apply(utm32, Inv, &mut data);
println!({:?}, data);

}

