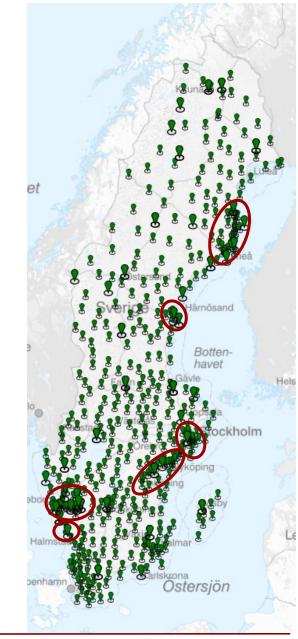


Reference network in the air 2.0

Kent Ohlsson, Tina Kempe, Tong Ning, Lantmäteriet


Milan Horemuz, KTH

The SIL 2.0-team, Trafikverket, Lantmäteriet, WSP, RISE, KTH

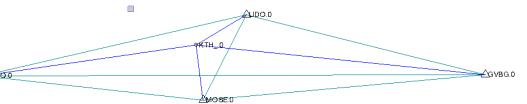
Project adapted network-RTK

- Cooperation between Trafikverket and Lantmäteriet for large infrastructure projects
- Densified SWEPOS network to 5-10 km
- Increased redundancy of the infrastructure (receivers, power supply, communication)
- Distribution of RTK-corrections with radio
- Local postprocessing service
- Increased monitoring of the services

Reference network in the air 2.0

13 activities focusing on development of the project adapted network-RTK concept

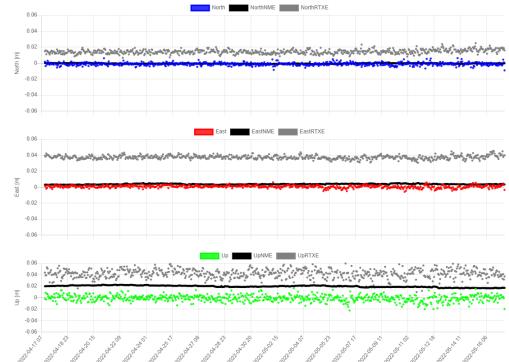
- 1. New and developed satellite systems
- 2. Coordination between projects and a uniform way of working
- 3. Investigation of conditions for development of the post processing service for static measurements
- 4. Distribution of corrections for RTK measurements
- 5. Investigation of the influence of ionosphere disturbances at future maxima
- 6. Development of portals for communication and administration of the project adapted services within a project
- 7. Identification of jammers in project areas
- 8. Routines for monitoring of reference station positions
- 9. Investigation of optimal placement of antennas on construction machines and reference stations
- 10. New positioning methods
- 11. Positioning system for autonomous construction machines
- 12. Project adapted geoid models
- 13. Documentation and communication of results from the project



3. Investigation of conditions for development of the post processing service for static measurements

- Theoretical and practical comparison between different calculation strategies
 - Single baselines + network adjustment
 - Multistation adjustment
 - Virtual Reference Station (Postprocessing + Network-RTK)
- Theoretically similar if same data is used
- Practically some mm difference, due to settings,

hidden satellites, etc.

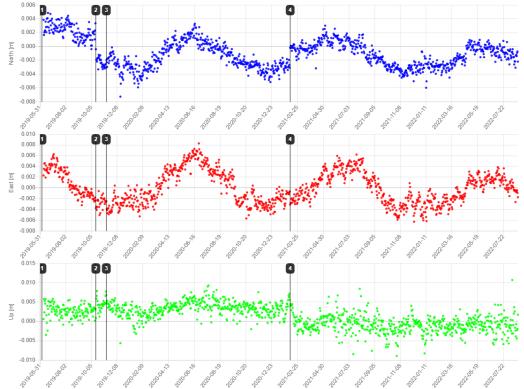


						KTH 24 h	Diff N [m]	Diff E [m]	Diff H [m]		
Diff Multistation-Single baseline Skellefteå	N	Е	Planar	Distance	Bearing	Multistation	0,000	0,001	0,000	Ī	
	0.004		0.004		(gon)	Single basline	0,001	0,000	-0,004		
14320244	-0,001	0,000	0,001			VRS Postprocessing	,	0,000	0,001		
14320247	-0,002	-0,001	0,002	-0,001	0,000	VK3 POstprocessing	0,000	0,000	0,001		
14320260	0,003	-0,003	0,004			C = 0					
14320264	-0,004	0,001	0,004	0,004	0,001		ats			RI.	0400 - 6000
14320282	-0,003	-0,001	0,004					LANTMÄTERIEI		SE	KTH vetenskap och konst
14320286	-0,004	0,000	0,004	0,002	0,000	Stomnät i luften 2.0		(1111) (1111) (1111) (1111)			.£9₩43

8. Routines for monitoring of reference station positions Black and grey show the results from the monitoring algorithms of the network RTK software.

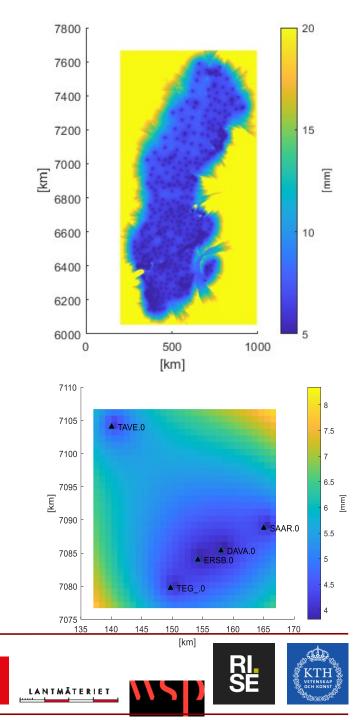
Near Real-Time coordinates for monitoring of CORS

- Since late 2021, hourly coordinate sets is used for monitoring of the SWEPOS[™] national CORS network
- GNSS data are processed by Bernese GNSS Software
- Displacement of the hourly coordinates wrt to the "official" station coordinates is calculated → distributed to SWEPOS monitoring system
- An important supplement to the monitoring algorithms of the network RTK software and daily coordinate determination



8. Routines for monitoring of reference station positions

- Reviewed and updated coordinates of the SWEPOS network
- Statistic analyses of time series for detection of sudden movements, trends and annual variations
- Inclinometers to monitor movements during a day possibly <1mm
- Daily coordinates for postprocessing
 - Coordinates not suitable risk of introducing errors



10. New positioning methods

Evaluation of geometry of reference stations

7

- Distance to closest reference station affect the uncertainty
- Distribution of reference stations have no big impact of result due to correlated measurements to satellites
- Station offline affects uncertainty in nearby area

Stomnät i luften 2.0