WORK ON CUMULATIVE GNSS SOLUTIONS AT LANTMÄTERIET

TOBIAS NILSSON (WITH CONTRIBUTIONS FROM THE LM LAC MEMBERS)

NKG WG REFERENCE FRAMES MAY 19-20, 2022

BACKGROUND AND MOTIVATION

- Currently, cumulative solutions (for estimating positions and velocities) using the CATREF software is, within the NKG, performed at FGI
 - NKG Repro I, doi:10.1007/s10291-019-0886-3
 - NKG Repro I upd 2020, doi:10.1007/s10291-021-01194-z
- Goal to make more regular cumulative solutions in the future
- Would be good to have more institutions within the NKG making cumulative solutions with CATREF
 - As backup
 - For validation
 - Possibility to discuss problems etc. with each other
- At Lantmäteriet we are interested in making cumulative solution, e.g., to get positions and velocities for all SWEPOS stations

1.1 0.9 0.7 0.5 0.3

-1.1 -1.3

I. LM VERSION OF NKG REPROT UPD 2020

- First, a version of NGK Reprol upd 2020 cumulative solution was calculated:
 - NKG Reprol (1997-2017) + operational NKG solutions (2017-2020)
 - Official solution by Sonja Lahtinen (FGI), doi:10.1007/s10291-021-01194-z
- Goals:
 - Getting started with CATREF
 - See if the obtained results agree with Sonja
- Used (almost) the same setup as Sonja:
 - Same SINEX files (except two)
 - Same datum
 - Same list of breaks
 - Almost the same outliers

201

COMPARISON WITH NKG REPROT UPD2020

 Velocity differences between LM solution and official solution (FGI)

LANTMÄTERI

- Mostly very close to zero
- Occasionally differences of some tenths of mm/year
 - Stations with very short time series (< I year)
 - VIB0 (252 days)
 - MNKW (77 days)
 - NOVP (77 days)
 - RIKO (191 days)
 - BAUI (179 days)

RESIDULAS FOR SOME STATIONS

ONSA

MYVA

SUL5

LANTMÄTERIET

SEASONAL VARIATIONS

- A test was made also estimating seasonal signals (365.25 days)
- Figures below shows the estimated amplitudes (in mm)

LANTMÄTERIEI

EFFECT OF INCLUDING SEASONAL VARIATIONS

 Figure show difference between velocities estimated in solutions with and without seasonal signals

LANTMÄTERIE

- Mostly minor differences
- Lager differences for a few stations:
 - Relatively short time span (a few years)
 - Variable amplitude of seasonal signal

RESIDUALS WITH AND WITHOUT SEASONAL SIGNALS

LANTMÄTERIET

SUR4 **PYHA** Without seasonals With seasonals With seasonals Without seasonals North [mm] North [mm] North [mm] North [mm] East [mm] East [mm] [mm] East [mm] East -5 ш ш с с с [u u d -10 Up [mm] -10 -20 -20 -20

2. PLANS FOR A CUMULATIVE SOLUTION FOR SWEPOS

- Would be nice to estimate positions and velocities of all SWEPOS sites (including important sites in neighboring countries)
- > 500 sites
- All stations operationally processed daily since 2011
- Issues:
 - Need to estimate breaks (preferable automatically)
 - Need to detect outliers (preferably automatically)

Sites in the SWEPOS daily solutions

INITIAL SOLUTION

- A first test has been made based on the weekly SWEPOS solutions 2015-2022
- Included stations with time series longer than three years (544 stations)
- Breaks:
 - From NKG Reprol upd2020 (for overlappning stations)
 - Semi-automatic break detection algorithm implemented. Run iteratively
- Outliers:
 - Automatic outlier detection (5-sigma outlier test with some other conditions). Run iteratively
- Datum:
 - NNT/NNR/NNS relative to the NKG Reprol updat2020 coordinates/velocities for selected stations
- Seasonal signals estimated (365.25 days and 182.625 days)

SEMI-AUTOMATIC BREAK DETECTION

- Gives suggestions where there can be a break. Need to manually decide if it should be used or not
- Not perfect, sometimes it fails
- Need to iterate

OUTLIER DETECTION

• Outlier after first iterations, more iterations needed

ESTIMATED VELOCITIES IN ITRF2014

VELOCITIES IN SWEREF99

- Transformed to SWEREF99 using the NKG 2020 transformations
- Significant local motions at some stations in Kiruna and Malmberget due to mining

3. GLOBAL ALIGNMENT

- In many cases it would be nice to have a global GNSS solution (i.e., including stations from all around the world)
- Allows the datum to be defined globally instead of regionally
 - Avoids border effects, i.e., that the datum realization gets worse close to the border of the regional network
- Setting up a complete global solution is a huge effort
 - Needs to include a lot of new sites from different parts of the world and learn about their behavior
- Shortcut: global alignment
 - Take a global GNSS solution (e.g., from CODE or IGS) and combine it with a regional solution
 - Datum can be defined globally, avoid border effects
 - Requires using the same analysis setup for the regional solution as for the global one

FIRST TEST

- A Lantmäteriet, we have started investigating global alignment
- As a test, we want to combine the NKG EPN solution with the global CODE solution
- Main issue:
 - CODE uses type mean antenna models (IGS14.atx)
 - NKG EPN solution uses individual antenna models (where available)
- First test:
 - Combine daily solutions from CODE and NKG EPN using CATREF
 - GPS week 1934-2033 (Jan 29 2017 Jan 12, 2019, both solutions uses GPS/GLONASS)
 - Only stations with type mean antenna models in both solutions combined (others considered as two different stations)
 - Datum based on 47 globally distributed sites (from IGb14_core.txt list)
- Later we plan to reprocess the NKG EPN solution using type mean models for some time period

FIRST RESULTS

• Two estimates for KIR0 in combined solution because it has an individually calibrated antenna

SUMMARY AND CONCLUSIONS

- At Lantmäteriet we have started calculating cumulative solutions using CATREF
- Our version of NKG Reprol upd2020 agree well with the official solution
 - Our CATREF installation and setup seems to work well
- Stated making a cumulative solution for all SWEPOS stations
 - First very preliminary results look ok, but some things need to be checked
 - Need to improve break detection and outlier detection algorithms
 - Should switch to using daily solutions instead of weekly, and extend the time period
- Started work on global alignment
 - Seems to be working
 - Final results of this investigation will hopefully be presented at the NKG GA