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Are we able to model
the 3D Ionosphere?
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(Also, do we need to?)



Single Layer Model

A 2D approximation of the 3D ionosphere
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Parameterization

Two basic ways of specifying a scalar field:

» Coefficients for a set of functions
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Time Delay (ns at 1.6 GHz)

Parameterization

Two basic ways of specifying a scalar field:

» Coefficients for a set of functions
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Where:
DC= 5ns
®= 14 (ctt. phase offset)
t = Local Time

Klobuchar, J., 1987. lonospheric Time-
Delay Algorithms for Single-Frequency
GPS Users. IEEE Transactions on
Aerospace and Electronic Systems (3),
pp. 325-331.



Parameterization

Two basic ways of specifying a scalar field:

« Values at a set of Grid points
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GNSS-specific pre-processing

Cycle slips & Receiver clock jumps
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Extracting the ilonosphere
from the measurements

Not frequency dependent
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Geometry-free Linear Combination:
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Extracting the ionosphere
from the measurements

Satellite hardware effect. Receiver hardware effect.
Can get data from external
analysis center or estimate
ourself.

Often need to estimate ourself.

Varies slowly.

Varies very slowly. \ /
Large noise.
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This is the part (Same comments as the code
that we want. biases, but they generally have
smaller values) Ambiguities. Tricky to get right.

Need to be estimated independently for
each satellite link, and re-estimated if there
is a cycle slip.



Phase levelling

A simple technigue for combining code and phase measurements
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Code measurements give an
absolute value for the
ionosphere, but are very noisy.
(blue crosses)

Phase measurements give a
relative value for the
ionosphere and have very little
noise.

(TECU)

By assimilating data, we can
combine these measurements |
to get a good ionosphere value
with little noise.

(red line)
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Phase levelling

A simple technigue for combining code and phase measurements

The effect of phase levelling is to replace the phase biases and
ambiguities with the code biases, while keeping the low noise.
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Differential Code Bias
Estimation

Anatomy of the equation:
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Scalar field in geographical coordinates. receiver.

Correlated in space and time. (points each other each other.
that are close in space and/or time are ' Varies slowly.

more likely to be similar) Varies very slowly.

Measurements from several satellites and receivers
are required to solve the equation.

The equations are linked through the ionospheric
parameter.

However, one degree_ of ffeedom remains. T_h|5 IS (Other constraints may also be used. Alternatively,
normally handled by introducing the constraint that  if hardware calibration was available to set the

the average of the satellite biases should be equal  Vvalue of one or more of the DCB, the degree of
to zero freedom would not exist.)



Apply blases and mapping

Lep 1= —(i—l I1+DCB’+DCB, +e;
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(STEC is given in the unit TECU, which is
defined as 10716 electrons per m"2.)
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Interpolation to grid points

Latitude

Kriging interpolation is used to find the value at an arbitrary coordinate
based on the value at the measurement points.

It takes into account the spatial variability of the ionosphere through the

use of a covariance function. (which describes how strongly two points are related as a function
of the distance between them)
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Filling the gaps
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Question time!
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