

Applications of UAVs

Outline

- What is a drone application
- Type of drones and how do they work
- Payload setup
- Application example
- Navigation implementation on the Smart UAV

What does a drone application consist of

Drones comes in all shape and sizes

Photo: M. Daniel J. McLain

And then all the others called hybrids

NKG Summer School

Fixedwing dynamics of flight

4 forces of flight

Fixedwings need to reach stall speed at takeoff

Fixedwing controls

Controls

Transmitter

Autonomous flight, one layer up

An autopilot system is used to control the trajectory of the vehicle without constant control by a human operator

Autonomous flight components

UAV capabilities

Multirotors

<u>Hybrids</u>

Fixed wings

- VTOL, vertical take-off and landing
- Agile maneuvering
- Hovering

<u>General</u>

- Payload
- Autonomous flight
- Sensor triggering
- Sensor integration
- Gimbal

- Long distance
- Long flight times

DTU Drone Center fleet

Smart UAV

Huginn X1 from Sky-Watch A/S

Cumulus One from

Erlecopter

Modular based educational kit

DJI tarot hexa

DJI s900 hexa

Mini Aerial Vehicle, MAV

Hubsan 107D and DJI Phantom 2 for pilot training

A drone application

Payload components

Purpose of the payload controller

Payload controller hardware

- Open-source hardware board
- 1GHz ARM processor
- SERIAL/SPI/I²C/CAN supported
- 512MB DDR3 RAM
- µSD slot for additional storage
- Weight 39,68 g
- Size 86.40 mm × 53.3 mm

Payload interface

Platform	Positioning
Waypoint nav.	Attitude
Event signal	

DTU

18 □ -data> 18 □ -data/inter> -data/inter -data/inter -data/inter

identifier 💌 tir	ne 💌 ID	🔻 d	istance 💌	standard-deviation 💌	position-longitude 💌	position-latitude 💌	height 🛛 💌	pitch 🔹 💌	roll 💌	yaw 💌	gimbal-pitch 💌	gimbal-roll 💌
0 22	15	1	0,9	2,1	41,200001	85,199997	215,300003	51,700001	15,3	21,1	25,1	27
1 22	16	1	0,9	2,1	41,200001	85,199997	215,300003	51,700001	15,3	21,1	25,1	27
2 22	17	1	0,9	2,1	41,200001	85,199997	215,300003	51,700001	15,3	21,1	25,1	27
3 22	18	1	0,9	2,1	41,200001	85,199997	215,300003	51,700001	15,3	21,1	25,1	27
4 22	19	1	0,9	2,1	41,200001	85,199997	215,300003	51,700001	15,3	21,1	25,1	27

17 **DTU Space, Technical University of Denmark**

NKG Summer School

A drone application

Measure height of water level

Gaining or loosing stream? That is essential for understanding pollution dynamics

Other applications in hydrology

- Flood Propagation Mapping
- Hydrologic monitoring of sinkholes, ephemeral lakes and other unconventional targets
- Remote sensing of ice and snow depth

Urban flood in Copenhagen

Sacred Blue Cenote, Mexico.

Arctic region

Obtain the orthometric height (RTK)

- h = ellipsoidal height
- H = orthometric height
- I = measured range
- N = geoid height ΔLat , $\Delta Long$, Δh 000 Ellipsoide Højde DVR90 Géoide H = h - I - NEllipsoide 8 36 m

Water height measuring 3 ranger principles

- <u>Sonar</u>
- Maxbotix HRXL-MaxSonar[®]-WRLT (MB7386)
- Distance up to 10 m

- <u>Radar</u>
- Continental ARS 308-2T
- Accuracy: 0.25 m or 1.5 %@>1 m

MaxSonar®-

High precision implementation

- GPS L1 and L2
- GLONASS L1 and L2
- L-band reception

Results range to water surface

Statistics

		Flight date (dd/mm/2016)							
Elight statistics									
right statistics	17/03	04/04	13/04	05/13	27/05				
Flight time (c)		500	270	200	250	260			
right time (s)		300	270	200	230	200			
Minimum-Maximum flight height (3-28	4-18.5	5-60	8-48	9-58				
Ground truth (mamsl)		missing	24.10±0.06	24.13±0.06	24.04±0.06	24.01±0.06			
	radar	0.07	0.05	0.08	0.09	0.05			
Standard Deviation (m) of water	sonar	0.80	2.31	1.3	0.36	14.42			
height retrieved by	CLDS	missing	1.08	0.95	1.68	2.05			

Navigation for the Smart UAV payload

Hardware

GNSS and INS integration

Loose integration

GNSS and INS integration

Tight integration

Integration in Range-domain

Can be used with less than 4 available GNSS satellites

GNSS and INS integration

Experimental Results (LC, Automotive test)

Daniel Olesen

Increasing height

Questions!

First Unmanned Aerial Vehicle in history?

Pigeons fitted with cameras to take aerial photos (1908)

Contact: Jakob Jakobsen jj@space.dtu.dk