From Passive to Active Control Point Networks – Evaluation of Accuracy in Static GPS Surveying

P. Häkli¹, U. Kallio¹ and J. Puupponen²

¹⁾ Finnish Geodetic Institute

²⁾ National Land Survey of Finland

NKG General Assembly 2014, Göteborg, Sweden, September 1-4, 2014

Contents

- Introduction
 - Control points
 - Reference system and frame
 - Active GNSS networks
 - Hierarchical vs. non-hierarchical measurements
- Methods
 - GPS data
 - GPS processing
- Results
- Analysis
 - Network vs. individual solutions
 - Agreement between VRSnet.fi and EUREF-FIN
- Conclusions

Background and motivation

- Finnish Geodetic Institute (FGI) together with National Land Survey (NLS) responsible of creating and maintaining of Finnish reference frames
- In the past control point measurements made <u>hierarchically</u> in Finland (traditional way): first order network defines the RF, second order network tied directly to that, third order network tied to second order, etc. <u>Measurements neglecting the hierarchy were not allowed</u>.
- <u>Situation has changed</u> with satellite positioning: measurements not anymore dependent on distance between the points and new positioning services (network RTK) available:
 - + Cost-effective measurements
 - + One GNSS equipment enough
 - Results do not have classification in EUREF-FIN
 - Non-hierarchical measurements neglecting the EUREF-FIN hierarchy (points are not tied to the nearest points but further away to active stations from the area of interest)
 - → Compatibility with hierarchically measured control points?

Control points

Passive control points

- Markers on the ground
- Coordinates refer to some physical point on the marker

Active control points

- Permanently fixed GNSS equipment that collect GNSS observations continuously
- Coordinates (usually) refer to antenna reference point (ARP)
 - Antenna-related
 - Accuracy may be destroyed/coordinates may change after equipment change or failure → requires monitoring

EUREF-FIN, Finnish ETRS89 realization

32

26° 28°

EUREF-FIN control point hierarchy

- E1 (first) order network
 - Permanent GPS network FinnRef
 - 100 passive control points
 - Measured 1996-97, defines the EUREF-FIN reference frame
- E1b order network
 - Densification 1998-99
 - 350 passive points
- E2 order network
 - Approx. 4800 passive points
- Thousands of local points in E3-E6

Active GNSS networks

- Scientific network FinnRef (governmental)
 - 13 stations since mid-90's (old stations)
 - 20 new stations to be GNSS capable
- Network RTK services (private companies)
 - Trimnet (previously VRSnet.fi)
 - Approx. 90 stations nationwide
 - Since 2000
 - SmartNet
 - Approx. 100 stations nationwide
 - Since 2011

Hierarchical vs. non-hierarchical measurements

- Hierarchical measurement
 - Fixing to the nearest higher order points
- Non-hierarchical measurements
 - Fixing only to active stations → hierarchy of passive points neglected
 - Baselines to active stations much longer → requires longer occupation times
- Compatibility between the two ways of measuring?

Interstation distance for active stations (large circles) is much longer than for passive control points (triangles)

Contents

- Introduction
 - Control points
 - Reference system and frame
 - Active GNSS networks
 - Hierarchical vs. non-hierarchical measurements
- Methods
 - GPS data
 - GPS processing
- Results
- Analysis
 - Network vs. individual solutions
 - Agreement between VRSnet.fi and EUREF-FIN
- Conclusions

GPS data

- GPS measurements from 2006-2010
 - Approx. 1500 passive points in E1-E3
 - 11 separate subnets (dashed circles in the Figure)
- Original measurements done with hiearchical measurements i.e. reference coordinates for the points determined by fixing to the nearest higher order passive points
- Official coordinates for some E2-E3 points determined with the same data

GPS processing

- Standard/default settings with Trimble Total Control
 - IGS precise orbits, CODE global ionosphere maps,...
- Measurements fixed only to nearest active stations (VRSnet.fi)
- Sessions processed as network (closed loops) and individual (point-wise) solutions (Figures below)
 - Baseline lenghts 0.4-261km, averages: 18km (network solution) and 51km (individual solution)
 - Average occupation time 2-3h depending on solution type (minimum set to 30 minutes)
 - Approx. 10000 baselines for network soln and 7500 baselines for individual soln processed

11

Contents

- Introduction
 - Control points
 - Reference system and frame
 - Active GNSS networks
 - Hierarchical vs. non-hierarchical measurements
- Methods
 - GPS data
 - GPS processing
- Results
- Analysis
 - Network vs. individual solutions
 - Agreement between VRSnet.fi and EUREF-FIN
- Conclusions

Results

- Some preprocessing (e.g. outliers removed,...)
- Additional verification of occupation times
- Results compared to official, hierarchically measured, coordinates

	Network solution			Individual solution		
	(<i>n</i> =1400)			(<i>n</i> =1401)		
	Ν	Е	U	N	E	U
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
Min	-15.40	-17.60	-79.80	-20.90	-21.70	-73.00
Max	27.40	20.10	60.10	27.30	20.10	66.40
Mean	4.68	-0.34	-14.32	5.10	-0.30	-13.07
Stdev	±6.64	±6.02	±21.09	±7.21	±6.42	±23.55
Rms	±8.13	±6.03	±25.50	±8.83	±6.43	±26.93
95%	±16.20	±12.20	±49.20	±17.59	±13.10	±52.00

- Results from different solution types (network/individual) quite equal network solution only slightly better
- Rms roughly 1cm in horizontal coordinates and 3cm in height (ellipsoidal)

Results – horizontal accuracy

Results – vertical accuracy

Contents

- Introduction
 - Control points
 - Reference system and frame
 - Active GNSS networks
 - Hierarchical vs. non-hierarchical measurements
- Methods
 - GPS data
 - GPS processing
- Results
- Analysis
 - Network vs. individual solutions
 - Agreement between VRSnet.fi and EUREF-FIN
- Conclusions

Analysis – solution type

- Results from different solution types (network/individual) quite equal – network solution only slightly better
- Correlation between solutions high (R²≈0.7)
- roughly 2/3 of the errors can be attributed to some common sources (and only 1/3 to differences caused by the solution types)
- → some systematics (biases) in data

Figure 6. Correlation between network and individual solutions for North (left), East (middle) and up (right) components.

Analysis – coordinate class

- Official E1 coordinates define the EUREF-FIN reference frame → residuals at E1 points should reveal possible differences in the active GNSS network and defining passive control points
- Residuals similar between the E1 and E2-E3 coordinate classes (Figures: E1 on top, E2-E3 below, vectors: horizontal residuals, color map: vertical) → suggests that most of the residuals at E2-E3 points originate from E1 or fiducial (active) points

Analysis – simulations (1/2)

 Simulation done by constraining the official E1 coordinates and propagating E1 residuals to the other points (E2-E3 and fiducial active stations)

Analysis – simulations (2/2)

- The simulation suggests that the agreement between active and passive network is in the order of 5-10mm in horizontal and 25mm in vertical coordinates
- For horizontal part this is a good result but for vertical coordinates some improvements could be made
- Most likely reason for the small disagreement in vertical coordinates is the post-glacial rebound effect

Conclusions

- Ignoring the coordinate hierarchy one may expect approx.
 1cm accuracy (rms) in horizontal and 2-3cm accuracy in vertical coordinates
- Some systematics remain between passive and active networks that are most likely caused by post-glacial rebound. By correcting this effect accuracy could be improved.
- The results were utilized when official guidelines in Finland were renewed – good compatibility means that now also active stations can be used as fiducial stations

Thanks!

More information:

- Häkli, P., U. Kallio and J. Puupponen (2013): From Passive to Active Control Point Networks – Evaluation of Accuracy in Static GPS Surveying. Environment for Sustainability, FIG Working Week 2013, Abuja, Nigeria, 6–10 May 2013.
- pasi.hakli@fgi.fi

