Kartverket

A new GNSS velocity field for Fennoscandia and comparison to GIA models

NKG General Assembly 2014, Göteborg

<u>Halfdan Pascal Kierulf</u>, Geodetic Institute, Norwegian Mapping Authority

Co-authors: Matthew Simpson, Holger Steffen and Martin Lidberg

Based on: Kierulf, Steffen, Simpson, Lidberg, Wu and Wang, GPS velocity field for Fennoscandia and a consistent comparison to glacial isostatic adjustment models, J. of Geophys. Res.: Solid Earth 07/2014; DOI: 10.1002/2013JB010889

GNSS data are analyzed with the analysis software GAMIT

GNSS data from 2000 -->

Station with >3.5 years observation time

Analysis strategy:

-GAMIT analysis: (7 degree cut-off, VMF1, FES2004, Abs PVC-model)

-Sub-network solutions combined to loosely-constrained daily solutions (h-files)

-Combine daily solutions to a multi-year solution (using GLOBK)

Continuation of the BIFROST work, but with more stations and longer observation time

The GNSS results are combined to a new velocity field for Fennoscandia

GIA models consists of both an Ice model and an Earth model

Ice models:

KL 98 (Lambeck etal, 1998) + Ice3g (Tushingham+Peltier, 1991) and

Ice 5g (Peltier, 2004)

```
Earth models-1D;
Lithospheric thickness
Upper mantle viscosity
Lower mantle viscosity
and
3D-models- Finite element method
```


Weighted root mean square (WRMS) of the difference between models and observations is a measure of how well the GIA model fit the observations

Best-fit GIA models can be found by comparing models with observations

However: Reference frame issues and plate tectonics might lead to wrong earth model (and ice model)

The plate tectonic signal has to be removed before comparing observations and models

Different tectonic corrections give different best-fit Earth models

Different reference frames can be connected by 7-(14-) parameter transformation

Translation (3 parameters) Rotation (3 parameters) Scale (1 parameter)

ITRF2000 and ITRF2008 differ in scale and translation (geocenter motion)

Difference in uplift of \sim 1.0mm/yr in Fennoscandia due to this reference frame differences

Different reference frame give different best fit Earth models

To avoid the problems with plate tectonics and reference frames we have used the *GIA-frame approach*

GNSS-Velocity field

GIA-model

With this approach can we compare the observed velocity field and the GIA-models in consistent reference frames

We can validate the GIA models using WRMS

Results with best fitting 1D model and 3D model:

Conclusions

-We have produced a new velocity field for Fennoscandia

- -We have compared the velocity field with different GIA-models
- -We have demonstrated how reference frame issues and tectonic motion may contaminate the comparison:
 - -it makes the interpretation of geodetic results in GIA studies problematic
 - -and may lead to wrong insight in earth models and ice history
- -Uncertainties in the reference frame and plate tectonic motion increase the uncertainties in the GIA model

-We have demonstrated a method to overcome the problem

