Regional gravity field modeling: A comparison of methods NKG General Assembly Chalmers University, Gothenburg

Vegard Ophaug, PhD Candidate

02.09.14

Gravity field modeling — classic methods

Spherical harmonics

$$N(r,\theta,\lambda) = \frac{GM}{R\gamma} \sum_{n=2}^{\infty} \left(\frac{R}{r}\right)^{n+1} \sum_{m=0}^{n} \bar{P}_{nm}(\cos\theta) \left[\Delta \bar{C}_{nm} \cos m\lambda + \bar{S}_{nm} \sin m\lambda\right]$$

Stokes integration in the frequency domain by 1D FFT

$$N(\varphi_P) = \frac{R\Delta\varphi\Delta\lambda}{4\pi\gamma_0} \mathcal{F}_1^{-1} \left[\sum_{\varphi_q = \varphi_1}^{\varphi_2} \mathcal{F}_1\{S(\Delta\lambda_{Pq})\} \cdot \mathcal{F}_1\{\Delta\bar{g}_q \cos\varphi_q\} \right]$$

Least-squares collocation (LSC)

$$\hat{N}_P = \mathbf{C}_{Pi}^{N \Delta g} \mathbf{C}_{ij}^{-1} \Delta g_i$$

Gravity field modeling — radial basis functions (RBF)

 RBFs are based on spherical harmonics (spectral representations):

$$B(\vec{x}, \vec{x}_{P}) = \sum_{n=0}^{\infty} \frac{2n+1}{4\pi R^{2}} \left(\frac{R}{r}\right)^{n+1} B_{n} P_{n}(\vec{r}^{T} \vec{r}_{P})$$

- ► The Legendre coefficients B_n define the kernel and reflect its behavior in the frequency domain
- The distance between the origin of the RBF on the sphere x_P and the computation point x is the only variable in the kernel
- The kernel reaches its maximum at $\vec{x}_P = \vec{x}$

Gravity field modeling — Shannon RBF

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Norwegian University

Gravity field modeling — radial basis functions (RBF)

- RBFs are versatile \rightarrow challenging!
- ► RBFs may be directly related to spherical harmonics:

$$T(\vec{x}) = \frac{GM}{R} \sum_{k=0}^{\infty} d_k \sum_{n=0}^{\infty} \frac{2n+1}{4\pi} \left(\frac{R}{r}\right)^{n+1} B_n P_n(\vec{r}^T \vec{r}_k)$$

The RBF coefficients d_k constitute the RBF part which represents the signal and thus play a similar role as the spherical harmonic coefficients

Collocation versus Stokes integration

- Equivalent methods in the global case
- ► Collocation performs least-squares prediction over the entire Earth, and applies Stokes's formula to the globally continuous ∆g function
- In a regional application, with near and distant zones, Stokes's formula is normally applied to a residual gravity signal in the near zone only
- In that case the models are not equivalent any more, and the cross-covariance function needs to be modified

Regional comparison of Stokes integration and collocation

Regional comparison of Stokes integration and collocation — Alpine region

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Regional comparison of Stokes integration and collocation — Alpine region

			max.	min.	mean	RMS
		N _{LSC}	0.410	-0.355	-0.016	0.141
Di	ata area	$N_{SHS} - N_{LSC}$	0.054	-0.059	0.000	0.014
Ta	arget area	$N_{SHS} - N_{LSC}$	0.032	-0.035	0.000	0.006

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Inverse problems and regularization

- Why the transition to inverse problems and regularization?
- Inverse problems:
 - Determine spherical harmonic coefficients $\Delta \bar{C}_{nm}, \bar{S}_{nm}$ from observations (SHA)
 - Determine *d*-coefficients from observations (RBFA)
- The above problems are typically ill-conditioned, due to various reasons
- Both SHA and RBFA may be formulated as linear inverse problems which may be solved using parameter estimation methods

E SOG

Inverse and ill-conditioned problems — Tikhonov regularization

The system is solved as follows:

$$\hat{\vec{x}} = \left(\mathbf{A}^{T}\mathbf{P}\mathbf{A} + \mathbf{P}_{x_{0}}\right)^{-1} \left(\mathbf{A}^{T}\mathbf{P}\vec{l} + \mathbf{P}_{x_{0}}\vec{x}_{0}\right)$$

- SHA: the coefficients have expectation zero and are assumed to vary according to the signal degree variances computed from "true" EGM2008 coefficients
- RBFA: the coefficients have expectation zero and are assumed to vary according to a RMS value computed from "true" *d*-coefficients of EGM2008
- i.e., $\vec{x}_0 = 0$ and $\mathbf{P}_{x_0} = \alpha \mathbf{K}^{-1}$
- \blacktriangleright SHA: K is a diagonal matrix containing the degree variances
- ▶ RBFA: K is a diagonal matrix containing the RMS values

Spherical harmonic analysis

- Synthetic observations *T*, computed by SHS (2 ≤ n ≤ 31) on a regular latitude-longitude grid with 5° spacing using the global EGM2008 model
- In turn, the estimated SH coefficients were used to determine *T*, allowing the computation of "true" differences between the gravity fields
- Signal degree variances were computed from "true" EGM2008 coefficients as well as the estimated coefficients. Error degree variances were computed from their difference

Spherical harmonic analysis

Noise $\sigma = 20 \, {\rm m^2 s^{-2}}$, $h = 300 \, {\rm km}$, no regularization $\alpha = 0$, cond $({\bf N} + \alpha {\bf K}^{-1}) = 206$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Spherical harmonic analysis

Noise $\sigma = 20 \, \mathrm{m^2 s^{-2}}$, $h = 300 \, \mathrm{km}$, regularization $\alpha_{L-curve} = 15.6$, $\mathrm{cond}(\mathbf{N} + \alpha \mathbf{K}^{-1}) = 37$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Norwegian University of Life Sciences

RBF analysis

- The RBFA case was set up similar to the SHA case
- "True" SH coefficients from EGM2008 were transferred to d-coefficients for the computation of gravity field differences
- Estimated *d*-coefficients were transferred to SH coefficients for signal and error degree variances plots
- Shannon RBFs were placed in a Reuter grid to avoid over-parametrization

RBF-analysis — difference between "mathematically correct" and "physically meaningful" coefficients

Noise-free observations, h = 0, $\alpha = 0 \rightarrow \operatorname{cond}(\mathbf{N} + \alpha \mathbf{K}^{-1}) = 6 \cdot 10^{18}$, $\alpha_{small} \rightarrow \operatorname{cond}(\mathbf{N} + \alpha \mathbf{K}^{-1}) = 7 \cdot 10^{14}$

RBF-analysis, regularization using the L-curve method

Noise $\sigma = 10 \,\mathrm{m^{2}s^{-2}}$, $h = 300 \,\mathrm{km}$, regularization $\alpha_{L-curve} = 1.48 \rightarrow \mathrm{cond}(\mathbf{N} + \alpha \mathbf{K}^{-1}) = 599$ $(\alpha_{small} \rightarrow \mathrm{cond}(\mathbf{N} + \alpha \mathbf{K}^{-1}) = 9 \cdot 10^{10})$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Summary

- ► RBFA: ill-conditioned even in the ideal noise-free case
- ▶ We need "physically meaningful" *d*-coefficients
- Regularization with prior information on the unknowns seems to work, SHA and RBFA show similar traits
- Outlook: Apply this regularization scheme for regional gravity field modeling. Combine different observations. Model other quantities than *T*. Other RBFs more suitable for regional modeling?

Regional gravity field modeling: A comparison of methods

Norwegian University of Life Sciences

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Thank you for your attention!