Report from the on-going project to compute the new NKG2014 geoid model

Jonas Ågren, Gabriel Strykowski, Mirjam Bilker-Koivula, Ove Omang, Silja Märdla, Tõnis Oja, Ivars Aleksejenko, Eimuntas Paršeliūnas, Lars E Sjöberg, René Forsberg, Janis Kaminskis

The NKG2014 geoid project

- The purpose of the project is to compute the next official NKG (quasi)geoid model, with the working name NKG2014.
- Started in 2011, still going on (see below)
- Project leader: Jonas Ågren, Sweden
- Participants:
 - Gabriel Strykowski, Denmark
 - Mirjam Bilker-Koivula, Finland
 - Ove Omang, Norway
 - Silja Märdla, Estonia
 - Tõnis Oja, Estonia
 - René Forsberg, Denmark
 - Ivars Aleksejenko, Latvia
 - Eidmuntas Paršeliūnas, Lithuania

- Andreas Engfeldt, Sweden
- Janis Kaminskis, Latvia
- Lars E Sjöberg, Sweden
- Hannu Ruotsalainen, Finland

ΑΝΤΜΑΤ

- Artu Ellmann, Estonia,
- Harli Jürgenson, Estonia

Current timetable

- 1. Specification phase (responsible: Jonas Ågren): finished in March 2013
- 2. Data update phase:
 - Gravity database (Gabriel Strykowski): Modernised and updated with corrected data from all the Nordic and Baltic countries. Version 2 delivered August 8, 2014.
 - DEM (Mirjam Bilker-Koivula): The EGG08 DTM complemented with new national models from Estonia, Latvia and Lithuania. Version 1 delivered in June 18, 2014
 - GNSS/levelling database (Ove Omang): Data collected from all Nordic and Baltic countries, but not yet compiled and corrected/transformed (only a partial, preliminary version for this NKG GA 2014 presentation).
 - All the above datasets are still in the process of being checked, clarified and updated.
- 3. Computation phase:
 - Preliminary gravimetric model computed to the NKG General Assembly.
 - The computation centers continue their work during Autumn 2014.
 - Hands-on computation workshop in Estonia in November 2014.
- 4. Publication phase:
 - Final model is presented at the IUGG meeting in Prague July 2015.
 - Publication of one large umbrella journal paper and several small ones by participants/computation centers.

Some decisions taken in the specification phase

- The NKG2014 geoid model is a quasigeoid model.
- The computation of the gravimetric model and the evaluation using GNSS/levelling is made in
 - common reference systems (frames) for the whole area,
 - the specified land uplift epoch 2000.0,
 - and the zero permanent tide system.
- All data types are transformed accordingly in the project. The land uplift corrections are made using the NKG2005LU model
- The different GNSS reference frames will be transformed to a common frame using the NKG2008 transformations (*result from the NKG ITRS-ETRS89 transformations project*).
- It seems clear that for practical application we will have to compute a corrector surface using GNSS/levelling. The question how this should be done has been postponed until after the final gravimetric model has been finalised.

LANTMÄTERIET

Computation centers

- Sweden (Jonas Ågren)
- Estonia (Silja Märdla, Tõnis Oja)
- Finland (Mirjam Bilker-Koivula)
- DTU Space (Gabriel Strykowski, René Forsberg)
- Norway (Ove Omang)

Preliminary NKG2014 geoid model – version 140828

- So far, two computation centers have been active, namely Sweden and Estonia.
- Here the preliminary gravimetric model computed by Sweden (Jonas Ågren) is presented.
- The next presentation will focus on the preliminary work of Estonia (Silja Märdla et al.)
- Please note that NKG2014_prel140828 is only a preliminary result of one computation center.
- A comparison with *preliminary* GNSS/levelling is also presented

Method and data used for NKG2014_prel140828

- The gravimetric quasigeoid model was computed by the Least Squares Modification of Stokes' formula with Additive corrections (LSMSA or KTH-method; see Sjöberg 1991, 2003,...) applied in a very similar way as in Ågren et al. (2009).
 - Least squares (stochastic) kernel modification (Sjöberg 1991).
 - Additive corrections for downward (analytical) continuation, atmosphere and the ellipsoidal correction.
 - Surface gravity anomalies gridded using a remove-interpolate-restore technique. EGM and RTM effects removed/restored. RTM effect computed using TC (Forsberg).
- The following observations were used:
 - Gravity observations from NKG gravity DB 2014 version 2 (2014-08-18).
 - The brand new GRACE/GOCE GGM GO_CONS_GCF_2_DIR_R5 with maximum degree 300.
 - Version 1 of the NKG DEM 2014 with 3"x3" resolution (2014-06-16) preliminary averaged to 0.002°x0.004°.

Evaluation of NKG2014_prel140828 using preliminary GNSS/levelling

- Only the Nordic countries, not the Baltic (due to lack of time)
- Normal heights in DVR 90, N2000, NN2000 and RH 2000, respectively.
- GNSS heights transformed to land uplift epoch 2000.0 and zero permanent tide system, not transformed by the NKG2008 transformations
- Mean values and standard deviations of the differences between GNSS/levelling and NKG2014_prel140828:

Country	#	Mean (m)	Standard deviation (m)
Denmark	665	-0.685	0.018
Finland	50	-0.682	0.022
Norway	901	-0.660	0.035
Finland	197	-0.678	0.022

GNSS/levelling residuals after a 1-parameter fit – Denmark

- NKG2014_prel140828
- Height system: DVR 90.

#	Min	Мах	Mean	StdDev
665	-0.039	0.059	0.000	0.018

GNSS/levelling residuals after a 1-parameter fit – Finland

- NKG2014_prel140828
- Height system: N2000

#	Min	Мах	Mean	StdDev
50	-0.039	0.054	0.000	0.022

GNSS/levelling residuals after a 1-parameter fit – Norway

- NKG2014_prel140828
- Height system: NN2000

#	Min	Max	Mean	StdDev
901	-0.184	0.106	0.000	0.035

GNSS/levelling residuals after a 1-parameter fit – Sweden

- NKG2014_prel140828
- Height system: RH 2000

#	Min	Мах	Mean	StdDev
197	-0.065	0.065	0.000	0.022

Comparison of NKG2014_prel140828 and NKG2004

Mean value removed.

1 cm contour interval

	#	Min	Мах	Mean	StdDev
)	665	-0.272	0.788	0.000	0.104

GNSS/levelling after a 1-parameter fit – all the Nordic countries

- Standard deviations for the NKG2014_prel140828 and NKG2004 gravimetric models.
- Height systems: DVR 90, N2000, NN2000 and RH 2000, respectively.

Standard deviations after 1-parameter fits (Unit: m)

Country	#	StdDev NKG2004	StdDev NKG2014_prel140528
Denmark	665	0.029	0.018
Finland	50	0.035	0.022
Norway	901	0.068	0.035
Sweden	197	0.043	0.022

Final words

- So far, very much work have been spent on updating and quality checking the different data types.
- Especially the NKG gravity DB has required much work, from all the involved countries.
- The preliminary gravimetric model NKG2014_prel140828 agrees well with GNSS/levelling. It is a considerable step forward compared to NKG2004.
- However, this is only a preliminary computation by one computation center.
- There are still uncertainties and suspect errors in the data, which we have to clarify and correct.
- Next, the computation centers will compute models using different methods, which will then be compared and analysed.
- We will then focus more on methodological aspects.

Remaining tasks

1. Specification phase (responsible: Jonas Ågren): finished in March 2013

2. Data update phase:

- Gravity database (Gabriel Strykowski): Modernised and updated with corrected data from all the Nordic and Baltic countries. Version 2 delivered August 8, 2014.
- DEM (Mirjam Bilker-Koivula): The EGG08 DTM complemented with new national models from Estonia, Latvia and Lithuania. Version 1 delivered in June 18, 2014.
- GNSS/levelling database (Ove Omang): Data collected from all Nordic and Baltic countries, but not yet compiled, corrected and transformed (only a partial, preliminary version for this NKG GA 2014 presentation).
- All the above datasets are still in the process of being checked, clarified and updated.

3. Computation phase:

- Preliminary gravimetric model computed to the NKG General Assembly.
- The computation centers continue their work during Autumn 2014.
- Hands-on computation workshop in Estonia in November 2014.
- 4. Publication phase:
 - Final model is presented at the IUGG meeting in Prague July 2015.
 - Publication of one large umbrella journal paper and several small ones by participants/computation centers.

