Repeated absolute gravity measurements in the Fennoscandian postglacial rebound area: comparison of gravity change with observed vertical motion and with GIA models

J. Mäkinen (1), B. Engen (2), A. Engfeldt (3), O. Gitlein (4),
J. Kaminskis (5), F. Klopping (6), T. Oja(7), E. Paršeliunas
(8), B.R. Pettersen (9), G. Strykowski (10), H. Wilmes (11), and the Absolute Gravity Team

Absolute Gravity Team

R. Forsberg, M. Bilker-Koivula, J. Jokela, R. Falk, W. Hoppe, A.
Lothhammer, A. Reinhold, L. Timmen, K. Lapushka, P. Petroškevičius,
K. Breili, C. Gerlach, J.G.O. Gjevestad, D. Lysaker, O.C.D. Omang, O.
Øvstedal, E. Roland, H. Ruotsalainen, J. Ågren, M. Lidberg, M. Lilje, G.
Lohasz, P.-A. Olsson, H.-G. Scherneck

Affiliations

- (1) Finnish Geodetic Institute, Masala, Finland
- (2) Norwegian Mapping Authority, Hønefoss, Norway
- (3) Lantmäteriet, Gävle, Sweden
- (4) Institut für Erdmessung, Leibniz Universität Hannover, Germany
- (5) Latvian Geospatial Information Agency, Riga, Latvia
- (6) National Oceanic and Atmospheric Administration (NOAA), currently
- at Micro-g Lacoste, Lafayette, CO, USA
- (7) Estonian Land Board, Tallinn, Estonia
- (8) Vilnius Gediminas Technical University, Lithuania
- (9) Norwegian University of Life Sciences, Ås, Norway

(10) DTU Space, National Space Institute, Technical University of Denmark, Copenhagen, Denmark

(11) Federal Agency for Cartography and Geodesy (BKG), Frankfurt am Main, Germany

Absolute gravity stations

Red rim: enough repeats to determine a trend

Isolines: vertical velocity mm/yr relative to CM from the empirical velocity model NKG2005LU_ABS

Things you can do with the data

- station-by-station comparison of g_dot and h_dot to agreements and inconsistencies
- multi-station comparison to find slope and intercept of g_dot vs. h_dot
- use an areally extensive set of g_dot values as a GIA modelling data set in its own right

Gravity and vertical rates used in the poster

1	2	3	4	5	6	7	8
Copenhagen_V	55.6869	12.4350	0.074	0.566	1.26	0.53	0.16
Joensuu	62.3912	30.0962	-0.865	0.493	4.50	0.19	3.31
Metsähovi	60.2175	24.3953	-0.775	0.100	5.21	0.23	4.05
Sodankylä	67.4209	26.3890	-1.182	0.206	8.53	0.31	7.29
Vaasa AA	63.0847	21.6458	-1.898	0.148	9.28	0.19	8.09
Vaasa AB	62.9612	21.7706	-1.462	0.197	9.28	0.19	8.09
Tromsö	69.6627	18.9396	-0.002	0.224	4.61	0.49	3.35
Stavanger	59.0175	5.5983	-0.329	0.172	2.19	0.51	1.05
Trysil_AB	61.4228	12.3814	-1.315	0.216	9.54	0.34	8.37
Trysil_AC	61.4228	12.3814	-1.077	0.126	9.54	0.34	8.37
Hönefoss_AB	60.1700	10.3800	-1.028	0.341			
Hönefoss AC	60.1300	10.3550	-0.723	0.228			
Arjeplog	66.3180	18.1249	-0.842	0.523	9.11	0.24	7.88
Kiruna	67.8776	21.0602	-0.955	0.223	7.72	0.28	6.48
Mårtsbo	60.5951	17.2585	-1.139	0.180	8.86	0.15	7.69
Onsala	57.3953	11.9255	-0.589	0.090	4.05	0.31	2.93
Östersund	63.4428	14.8581	-1.257	0.506	9.55	0.17	8.35
Skellefteå	64.8792	21.0483	-1.478	0.156	10.95	0.18	9.74
Kramfors	62.8547	18.0961	-0.836	0.576			
Suurupi	59.4667	24.3833	-0.525	0.428	4.35	0.34	3.20
Vilnius	54.7217	25.3383	-0.306	0.409	0.77	0.34	-0.38
Toravere	58.2667	26.4667	-0.369	0.428			

6 vertical rate mm/yr Martin Lidberg Ph.D. thesis ITRF2005

- 4 gravity rate μgal/yr
- 7 error 1-sigma

5 error 1-sigma

8 (6) transformed to ITRF2000 by JM

NKG General Assembly, Sundvolden, September 27-30, 2010

Fitting of linear relationship to g_dot vs. h_dot, part I

Slope -0.148 0.022 µgal/mm (1-sigma) Intercept +0.05 0.16 µgal or +0.33 1.08 mm/yr m.sq. = 1.85 (tail probability 0.02)

Fitting of linear relationship to g_dot vs. h_dot, part II

Slope -0.150 0.022 μgal/mm (1-sigma) Intercept -0.11 0.16 μgal or -0.73 1.08 mm/yr m.sq. = 1.87 (tail probability 0.02)

Tests of GIA models using g_dot data (I)

- <u>g_dot predictions not</u> always available
- multiply h_dot predictions by -0.154 µgal/mm
- see e.g., Wahr (1995), Peltier (2004)
- calculate weighted errorsum-of-squares and mean square

Map: expected g_rate from the GIA model by Milne (2001,2004)

Tests of GIA models using g_dot data (II)

 Lambeck et al. (1998) map gave PGR relative to MSL (1992-1991). Transformed to PGR relative to the Earth's center of mass before multiplying with -0.154 µgal/mm

Map: expected g_rate from the GIA model by Lambeck et al. (1998)

Tests of GIA models using g_dot data (III)

Map: expected g_rate from the GIA model ICE-5G (VM2) by Peltier (2004)

- Mean squares:
- Milne 1.21
- Lambeck 1.52
- ICE-5G(VM2) 1.34
- In each case, removing the two stations with biggest misfit brings the mean square below 1.0
- i.e., no strong discrimination based on the totality of data

