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The Finnish Geodetic Institute (FGI) investigates crustal 

deformations in Olkiluoto, at a proposed disposal site for nuclear 

waste in Finland. The size of the research area is approximately 

2x4 km
2
 and consists of 10 concrete pillars on bedrock. Since 1995 

the network has been measured semi-annually with GPS campaigns. 

The observation sessions, at least 24 hours, have been measured with 

dual frequency geodetic receivers and choke ring antennas and 

processed with Bernese software.  

The scale of the GPS network has varied from one campaign to 

another up to ±0.5 ppm. In order to control the scale of the network, 

since 2002 one 511-m GPS vector has been simultaneously 

measured with electronic distance measurement (EDM) using a Kern 

ME5000 Mekometer. The Mekometer has been regularly calibrated 

at the Nummela Standard Baseline which is measured with the 

Väisälä white light interference comparator with total standard 

uncertainty of ±0.09 mm/km in the traceability chain to the 

definition of the metre. Standard uncertainty of the scale transfer to 

Olkiluoto baseline is approximately ±0.3 mm. 

The length of the 511-m Olkiluoto baseline measured with GPS 

differ from the traceable EDM results an average of 0.64 mm (over 1 

ppm) in 2002–2007 and the difference is of systematic nature: GPS 

gives longer distances. Since EDM results are traceable to the 

definition of metre, uncertainties well-defined and the difference is 

significant regarding to the uncertainty of EDM, this leads to an 

assumption that the GPS solution may be biased.  

To study the problem the GPS antennas used in the project were 

sent for absolute antenna calibration and additional EDM+GPS 

measurements were carried out at another length standard, Kyvišk�s 

calibration baseline and test field in Lithuania in 2008. In Kyvišk�s 

we were able to do the comparison for several lengths 20...1320 m in 

ideal conditions (open sky, stable monumentation, etc). 

We used Ashtech Z-XII3 GPS receivers and ASH7000936C_M 

Choke ring antennas. Two 24-hour sessions of GPS data were 

processed with Bernese 5.0 software using different processing 

methods (L1, L1&L2, QIF, and Narrow-Lane). All cases were 

processed with three different cut off angles (3, 10 and 20 degrees), 

two different ionosphere models and three antenna tables. 

Ionosphere models were a local model (produced using dual-

frequency data of pillar 4) and global (CODE) ionosphere model. 

Relative and absolute antenna calibration tables of the IGS were 

used, as well as individual calibration tables from Geo++.  

Figures 3a-b show the results for relative type and absolute 

individual antenna calibration solutions with global ionosphere 

model and 3 degree cut off angle. Results are differences between 

the mean of two 24-hour GPS sessions and the Mekometer true 

values (Table 2). Uncertainty bars are standard uncertainties (k=1) of 

the Mekometer scale transfer. Relative antenna calibrations (Fig. 3a) 

give similar results as absolute calibration which is not shown here. 

One individually calibrated antenna caused significant deviations 

and is therefore left out from the results. Figure 3b (note the 

difference in scale), show the results without that antenna. Results 

with different cut off angles and local ionosphere model are almost 

identical to the ones shown here.  

Figures 4a-b show the L1 and QIF solutions of figure 3b, where 

individual antenna calibrations were used. The uncertainties 

represent the repeatability of the two 24-hour GPS solutions. L1&L2 

and Narrow lane solutions are not shown, but the results are similar 

to L1 and QIF results respectively. The uncertainties of L1 solutions 

are clearly distance dependent even if the ionosphere model was 

used. The uncertainties of QIF are smaller and not distance 

dependent. However, the QIF results deviate more from true values 

than L1 solution. This may indicate small uncertainties in antenna 

calibration that escalate when linear combinations of L1 and L2 are 

created. 

The difference between daily GPS results show that L1 and 

L1&L2 solutions have a distance dependence of approx. 0.5 ppm 

(Fig. 5) with both global and local ionosphere model when all the 

baselines are considered. QIF and Narrow-lane techniques do not 

have statistically significant distance dependence.   

In Figure 6 the metrological accuracy of the GPS solutions can be 

seen. The Mekometer results of table 2 were used as true values in 

comparison. When type calibrated antennas were used L1&L2 gives 

the best results with rms of 0.4-0.5 mm. The rms of L1 is 0.7 mm 

and of QIF and Narrow-lane between 1.9 and 2.0 mm. When 

individually calibrated antennas were used the rms values decreased 

to 0.3 mm for L1 and L1&L2 solution and to 0.5-0.6 mm for QIF 

and Narrow lane solution. The ionosphere model or cut off angle did 

not have significant influence on the results. 

Figure 7 shows the precision of GPS solutions of the subsequent 

processing days. QIF and Narrow-lane solutions have the best 

repeatability with rms of 0.2 mm. Rms of L1 solutions is 0.4-0.5 mm 

and of L1&L2 0.5-0.6 mm. By using the global ionosphere model 

the rms of L1 and L1&L2 solutions is 0.1 mm smaller.  
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Table 1. The components of the standard uncertainty (k=1) at 

Kyvišk�s calibration test field. 

Component Uncertainty (k=1) 

 Nummela standard baseline 

Interference measurements of Nummela ±0.09 mm/km 

Calibration of the transfer standard (ME5000) 

Projection measurements at Nummela ±0.07 mm 

Determination of scale correction ±0.05 mm/km 

Additive constant ±0.02 mm 

At Kyvišk�s test field 

Temperature observations ±0.30 mm/km 

Air pressure observations ±0.07 mm/km 

Determination of relative humidity ±0.02 mm/km 

Random errors from adjustment ±0.03-0.22 mm 
 

 

 
Figure 1. Kyvišk�s calibration 

baseline (blue lines connecting 

pillars 1-6) and test field that 

includes also pillar 7. 

 

Table 2. Mekometer results of the 

Kyvišk�s test field in mm. 

 Slope distance  

with extended 

uncertainties (k=2) 

1 – 2 100 163.4 ±0.2 

1 – 3 360 177.1 ±0.3 

1 – 4 1 120 386.7 ±0.8 

1 – 5 1 300 483.7 ±0.9 

1 – 6 1 320 495.1 ±0.9 

1 – 7 841 814.4 ±0.8 

2 – 3 260 013.8 ±0.3 

2 – 4 1 020 223.3 ±0.7 

2 – 5 1 200 320.4 ±0.8 

2 – 6 1 220 331.8 ±0.8 

2 – 7 775 244.5 ±0.8 

3 – 4 760 209.6 ±0.5 

3 – 5 940 306.7 ±0.7 

3 – 6 960 318.1 ±0.7 

3 – 7 644 380.7 ±0.7 

4 – 5 180 098.0 ±0.5 

4 – 6 200 110.0 ±0.5 

4 – 7 804 747.3 ±0.8 

5 – 6 20 012.6 ±0.2 

5 – 7 933 821.8 ±0.9 

6 – 7 949 189.6 ±0.9 
 

 

 

 
Figure 3a-b. The deviation of GPS results from the Mekometer results

with a) relative, and b) individual antenna calibrations. One antenna 

was rejected. Note that the scale in b is different. The results were 

obtained using global ionosphere model and 3 degree cut off angle.  The 

uncertainty bars are standard uncertainties (k=1) of Mekometer 

solutions. 

 

 

 
Figure 4a-b. L1 and QIF solutions of Figure 3b, with the uncertainties 

derived from the repeatability of two GPS solutions. The figures show 

clearly a distance dependent increase of uncertainty in L1 solution. The 

uncertainty of QIF solution is not distance dependent, but the results 

deviate more from Mekometer results than L1 solution.  

 
Figure 2. GPS measurements at pillars 5 and 6. The environment is 

excellent for satellite positioning, offering unobstructed visibility at most 

pillars. 
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