Processing of the NKG2008 campaign

Lotti Jivall, Oddvar Tangen, Priit Pihlak, Pasi Häkli, Gunstein Dalane, Martin Lidberg, Shfaqat Abbas Khan

Outline

- The NKG2008 campaign objectives
- NKG2003
- Methods for processing, distributed processing
- Connection to ITRF
- Comparison to NKG2003
- Conclusion

Objectives of NKG2008

- Improve and update the transformations from ITRF to the national ETRS 89 realisations in the area.
- Establish a common reference frame in the Nordic-Arctic region

NKG2003

Final solution is based on an average of solutions from GIPSY, GAMIT and Bernese and has a global connection to ITRF2000

NKG2008

- GPS-week 1499 28/9-4/19 2008 week 40
- Totally 417 stations including additional 39 IGS/EPN
- Mainly permanent stations, campaign stations in Norway, Denmark, Faroe Islands, Latvia, Lithuania
- RINEX-data, quality check and solutions at an ftp-server at KMS

Processing of NKG2008

Same ambition as with NKG2003:

- Process with different softwares to have a better chance to detect problems
- Use "state of the art"-modelling in GPS-processing, but higher order ionoshere terms and modern troposphere mapping functions like GMF and VMF are not implemented in the current version of the Bernese.
- Considering the large network and our agendas, we decided to distribute the processing.
- To ensure the consistency between the sub networks, we defined a backbone consisting of 70 IGS/EPNstations which all processing centers should process.

LANTMÄTERIET

Distributed processing with Bernese SW

- ELB(Priit) Baltic states (71) + BB
- LM(Lotti) –
 Denmark, Sweden,
 Finland (190) + BB
- SK(Oddvar) –
 Norway,
 Greenland, Iceland
 (116) + BB

Additional processing

DTU (Abbas) – Denmark, Greenland, Faoe Islands + BB, Bernese PPP (IGS/MIT), GIPSY PPP(JPL)

SK (Gunstein) - Norway, Greenland, Faroe Islands, Iceland (111) + BB, GIPSY PPP (rel)

(GAMIT:LM(Martin) Full net (417) + BB (no solution yet))

Processing strategy

Solution with absolute antenna models

- 3 deg, 10 deg and 25 deg
- Absolute antenna models (PHAS_NKG08.I05), individual calibrated
- IGS05

Alternative solution with relative antenna models – to be comparable with the old campaign

- 10 deg and 25 deg
- Relative antenna models (PHAS_NKG08.I01)
- ITRF 2005

Both

- Ionosphere free linear combination
- FES2004 Ocean tide loading
- Saastamoninen troposphere model and Niell mapping functions (dry and wet)

Evaluation of GPS-processing

- Daily repeatbility
- Ambiguity resolution
- Fix-float
- Elevation cut-off test
- Comparisons to national solutions, e.g. SWEPOS

Connection to ITRF – which ITRF?

Connection to ITRF – how?

- •Regional or global?
- •Heavily constrained or minimum constrained?
- Which parameters to constrain in a minimum constrained solution?
- Additional Helmert?

Regional or global?

- The solution from NKG2008 will be the starting point for the transformation between ITRF and the national ETRS 89, thus the answer depends on the use of the transformation
- Regional/national network solutions in ITRF e.g. EPNsolutions, EUPOS-solutions or own national solutions
 regional constraint

L Α Ν Τ Μ Ά Τ Ε R Ι Ε 1

 Points determined with PPP-strategies -> global constraint

15

Regional or global? cont

- EPN has densified ITRF and it make sense to use it as the main definition of ITRF in our region
- Regional network solutions have higher accuracy demands than PPP
- -> the main solution should have a regional constraint
- A regional constraint in the EPN-area for the FULL network is not suitable, additional solution for the full network needed

L Α Ν Τ Μ Ά Τ Ε R Ι Ε 1

Heavily or minimum constrained?

- The minimum constrained solution gives discrepancies to the official values
- The constrained solution destroys the internal accuracy

Parameters in a minimum constrained solution

Estimated crd = $(1+dS) \cdot rot \cdot reference crd + translation$

- Bern: no-net-translation for regional networks (0.01 mm)
- Bern: no-net-rotation for global networks (0.1 mm)
- Bern: scale condition- just in rare cases
- Altamimi: condition on all 7 paramters, 1 mm
- If a scale or rotation is present in the network it would makes sense to constrain also this parameters to get a better alignmnet with the reference coordinates

ANTMÄTFR

Example of conditions on translation and scale with different weights

BERN_A03 to ITRF2008										
Sigr	nas m	Rms c tran solu	Rms of residulas in Helmert- transformations between constrained solution and ITRF2008							
Transl	Scale		0-par		4-par			Scale ppb		
0.00001	no scale	4.1	2.9	5.1	1.1	1.1	4.2	-2.3		
0.00001	0.001	1.1	1.1	13.8	1.1	1.1	4.2	-2		
0.00001	0.0001	1.2	1.4	9.0	1.2	1.4	4.8	-1.2		
0.00001	0.00001	1.6	2.5	7.4	1.6	2.5	7.4	0		
0.001	0.001	11.9	10.9	44.1	1.2	1.0	4.2	-0.8		

Conclusions from the testing on minimum constrained solution

- We have not found an optimal minium constrained solution found that absorbs the scale without degrading the heighs
- Add a Helmert afterwards to solve the scale
- Constraining both translation and rotation absorbs a tilt between the reference frames
- In the Bernese ADDNEQ2 a constraint on 1 mm is too loose (at least if the network not is global) – too large difference to the reference coordinates

Final official solution of NKG2008

- Regional constrained to EPN cumulative solution EPNGW1570
- Minimum constrained translation and rotations
- Absolute antenna models, 3 deg cut-off
- Mc61570a03.crd/snx/nq0
- Additional solutions: 4_IG05_A03, 4GIT08_A03 ...

Final solution minus official values, horisontal

Final solution minus official values, vertical

Comparison between different solutions

2011-03-17

Comparison between different solutions

- systematic in horizontal < 5 mm
- c:a 15 mm height diff between MC61570A03 and 4_IG05_A03
- Bernese PPP inbetween, but closer to MC61570A03
- c:a 3 mm in height between Bernese PPP with IGS or MIT-orbits
- 4_IG05_A03 and G_JPL_BB agree quite well in height
- Some outliers

Absolute and relative antenna models

7-parameter-fit between solutions with relative and absolute antenna models

- Systematic scale difference
- Residulas up to 40 mm, many stations 10-20 mm
- Fit on just SWEPOS-stations (163 stn) rms 1.3 mm
 -> consistent set of antenna/radome pairs gives no problem

Comparison to NKG2003

- R10 and A03 solutions fitted to NKG2003 after reduction with NKG_RF03.VEL. RMS of residuals in mm in the table.
- Tilt and scale
- A03 and R10 equivalent
- If fit just on stable Swedish and Finnish stations: 1.5, 1.6, 2.9 mm

	#par	n	е	u
R10	3	4.9	7.0	12.2
A03	3	5.3	7.1	12.6
R10	7	3.3	2.8	7.9
A03	7	3.3	2.8	8.6

LANTMÄTERIET

Conclusions

- Good internal precision in the network
- The largest uncertainties are connected to the connection to ITRF
- The choice of ITRF connection is related to the use of the reference frame
- The internal consistency is not changed much when going from relative to absolute antenna models, if a homogenius set of antenna-radome pairs are used

LANTMÄTERIE