The influence of decadal- to millennial-scale ice mass changes on present-day vertical land motion in Greenland: Implications for the interpretation of GPS observations

NKG September 2010

Matthew J.R. Simpson^{1,†}, Glenn A. Milne¹, Leanne Wake² and Philippe Huybrechts³

¹ Department of Earth Sciences, University of Ottawa, K1N 6N5, Canada

([†] Now at Geodetic Institute, Norwegian Mapping Authority, Hønefoss, Norway) ²Department of Geography, University of Calgary, T2N 1N4, Canada ³Earth System Sciences & Departement Geografie, Vrije Universiteit Brussel, B-1050 Brussels, Belgium

Motivation

- (i) The accurate interpretation of GPS data from Greenland requires the elastic and viscous components of the motion to be isolated.
- (ii) As part of the Greenland GPS Network project (GNET), 51 continuous GPS stations have recently been installed around the periphery of the ice sheet.
- (iii) The secondary aim of this analysis is to examine the possible influence of ice mass variability over the last century (or so) on present-day vertical land motion.

Methodology

GIA model

- sea-level model (Mitrovica and Milne, 2003)
- Ice model (ICE-5G non-Greenland + Huybrechts, 2002)
- Earth model

elastic lithosphere

Methodology

Huy2 Ice history for Greenland [Simpson et al., 2009]

Results – predicted uplift rates

Huy2

ICE-5G(VM2) – Peltier [2004]

Khan et al. [2008]

Matthew Simpson NKG Sept '10

Results – stages of evolution

Matthew Simpson NKG Sept '10

4 – 1 ka BP

1 - 0 ka BP

Results - comparison with GPS observations

	Observed uplift rates (mm/a) corrected for		
	elastic term	Predicted uplift rates (mm/a)	
GPS location	[Khan et al., 2008]	Huy2 (best-fit Earth model)	
Kellyville	-1.2 1.1	-0.94	
Nuuk	-2.2 1.3	-1.92	
Qaqortoq	-0.3 1.1	-0.66	
Kulusuk	-0.4 1.1	0.23	
Scoresby Sund	0 1.1	1.17	
Thule	3.6 1.1	0.02	

Dietrich et al. [2005]

MANT.

30736

4 4

300'00'

i i

NORWEGIAN MAPPING

AUTHORITY

Results - sensitivity to changes in Earth model parameters

Lithospheric thickness 71 to 120 km

Upper mantle

Lower mantle 0.3 x 10²¹ to 10²¹ Pa s 10²¹ to 50 x 10²¹ Pa s

Results – the last 100 years?

Huy2

100 year BP ice-ocean loading increment marks the last timestep prior to present-day for this GIA model.

With a relatively weak upper mantle (10^{20} Pa s) the viscous signal is \pm 1.2 mm/a.

Recent analyses have considered changes over the last 100 years or so [e.g. *Huybrechts et al.*, 2004; *Hanna et al.*, 2005; *Rignot et al.*, 2008; Ettema et al., 2009; *Wake et al.*, 2009].

Results – the last 100 years?

Wake et al. [2009] SMB reconstruction 1866-2005

Does not account for non-steadystate ice-dynamic features (i.e. outlet glaciers).

	Observed uplift rates (mm/a) uncorrected		
	for elastic term	Predicted uplift rates (mm/a)	
	[Khan et al., 2008]	Huy2 (best-fit	Huy2-Wake (best-fit
GPS locations		Earth model)	Earth model)
Kellyville	0.2 1.1	-0.94	0.42
Nuuk	-1.5 1.3	-1.92	-0.71
Qaqortoq	1.1 1.1	-0.66	0.2
Kulusuk	5.2 1.1	0.23	0.48
Scoresby Sund	0.9 1.1	1.17	1.5
Thule	3.9 1.1	0.02	0.93

Conclusions

- (1) Predicted present-day uplift rates in Greenland are strongly dependent on the adopted Earth model. In particular, predictions in southwest Greenland are *highly* sensitive to changes in upper mantle viscosity.
- (2) Analysis of post-LGM Greenland loading changes shows how different periods of ice mass variation dominate in particular regions of Greenland.
- (3) Results from the *Wake et al.* [2009] model indicate that decadal-scale ice mass variability over the past ~140 years plays only a small role in determining the present-day viscous response.
- (4) Modern surface mass balance changes have a large influence on predicted present-day uplift rates in some regions of Greenland.

